Mostrar el registro sencillo del ítem

dc.contributor.author
Escalante, Mariana Silvina  
dc.contributor.author
Tolomei, Paola Beatriz  
dc.contributor.author
Matamala, M.  
dc.contributor.author
Rapaport, I.  
dc.contributor.author
Torres, L. M.  
dc.date.available
2025-11-03T09:56:39Z  
dc.date.issued
2025-03  
dc.identifier.citation
Escalante, Mariana Silvina; Tolomei, Paola Beatriz; Matamala, M.; Rapaport, I.; Torres, L. M.; The Minimum Clique Routing Problem on Cycles; John Wiley & Sons; Networks; 86; 1; 3-2025; 71-79  
dc.identifier.issn
0028-3045  
dc.identifier.uri
http://hdl.handle.net/11336/274515  
dc.description.abstract
In the minimum clique routing problem on cycles mcrpc, we are given a cycle together with a set of demands (weighted terminals pairs) and the goal is to route all the pairs minimizing the maximum weight clique of the intersection graph induced by the routing. The nodes of this graph are the demands with their corresponding weights and two demands are adjacent when their routes share at least one arc. In this work, we are not only interested in the mcrpc but also in two natural subproblems. First, we consider the situation where the demands are disjoint, in the sense that every two demands do not share any of their corresponding terminals. Second, we analyze the subproblem where the weights of the routes are all equal. We first show that the problem is NP-hard even in the subproblem of disjoint demands. For the case of arbitrary weights, we exhibit a simple combinatorial 2-approximation algorithm and a 3/2-approximation algorithm based on rounding a solution of a relaxation of an integer linear programming formulation of our problem. Finally, we give a fixed parameter tractable algorithm for the case of uniform weights, whose parameter is the maximum number of demands for which a demand exists whose terminals alternate in the cycle with the terminals of each of them.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
John Wiley & Sons  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ROUTING PROBLEM  
dc.subject
RING NETWORKS  
dc.subject
APPROXIMATION ALGORITHM  
dc.subject
MINIMUM CLIQUE  
dc.subject.classification
Otras Matemáticas  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
The Minimum Clique Routing Problem on Cycles  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-10-30T12:08:35Z  
dc.journal.volume
86  
dc.journal.number
1  
dc.journal.pagination
71-79  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Escalante, Mariana Silvina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina  
dc.description.fil
Fil: Tolomei, Paola Beatriz. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina  
dc.description.fil
Fil: Matamala, M.. Universidad de Chile.; Chile  
dc.description.fil
Fil: Rapaport, I.. Universidad de Chile.; Chile  
dc.description.fil
Fil: Torres, L. M.. Escuela Politécnica Nacional; Ecuador  
dc.journal.title
Networks  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/net.22277  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/net.22277