Mostrar el registro sencillo del ítem

dc.contributor.author
Aptkarev, Alexander I.  
dc.contributor.author
Cirilo, Diego Julio  
dc.contributor.author
Rykov, Yuri G.  
dc.date.available
2025-10-31T14:16:04Z  
dc.date.issued
2025-05  
dc.identifier.citation
Aptkarev, Alexander I.; Cirilo, Diego Julio; Rykov, Yuri G.; Geometrical maps in the hydrodynamic/quantum description of the evolution equations; World Scientific; International Journal of Geometric Methods in Modern Physics; 5-2025; 1-21  
dc.identifier.issn
0219-8878  
dc.identifier.uri
http://hdl.handle.net/11336/274500  
dc.description.abstract
In this work, the topological and geometrical structure of the evolution equations of physical systems is treated and analyzed from the point of view of the set of solutions, in particular the singular ones. To this end, a generalization of the Wigner function is introduced for the case of multidimensional quadratic Hamiltonians of the type of our previous work [A. I. Aptekarev, Yu. G. Rykov and D. J. Cirilo-Lombardo, Diffeomorphic structure of evolution equations, J. Geom. Phys. 202 (2024) 105234]. The phase space solutions from the generalized Wigner equation are compared with those from the Schrodinger-type equation where the Madelung transformation was introduced. We show that singular delta-type solutions coming from the Wigner–Liouville system certainly exist, intuiting accordingly that they could be mapped to a hydrodynamic representation, in sharp contrast with the Schrodinger (wave mechanical) case, where delta-like solutions become inconsistent. This is achieved by considering a topological limit to the coherent subspace of solutions of the Wigner–Liouville equation, where the kernel (acting as quasidistribution) of these new coherent functions (coherent states) takes the main role. Our results are compared in the context of the wave mechanical approach to cosmic structure formation considering the Zeldovich approach of [P. Coles and K. Spencer, A wave-mechanical approach to cosmic structure formation, Mon. Not. R. Astron. Soc. 342 (2003) 176]. The possibility of obtaining a one-to-one functional relationship between the singular solution space of the hydrodynamic system and the Wigner–Liouville one is briefly discussed.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
World Scientific  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
EVOLUTION EQUATIONS  
dc.subject
DIFFERENTIAL GEOMETRY  
dc.subject
COHERENT STATES  
dc.subject
SINGULAR SOLUTIONS  
dc.subject
WIGNER-LIOUVILLE FUNCTIONS  
dc.subject
MULTIDIMENSIONAL HAMILTONIAN SYSTEMS  
dc.subject
COSMIC STRUCTURE FORMATION  
dc.subject.classification
Física de Partículas y Campos  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Astronomía  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Geometrical maps in the hydrodynamic/quantum description of the evolution equations  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-10-31T10:35:48Z  
dc.journal.pagination
1-21  
dc.journal.pais
Singapur  
dc.description.fil
Fil: Aptkarev, Alexander I.. Russian Academy of Sciences; Rusia  
dc.description.fil
Fil: Cirilo, Diego Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina  
dc.description.fil
Fil: Rykov, Yuri G.. Russian Academy of Sciences; Rusia  
dc.journal.title
International Journal of Geometric Methods in Modern Physics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/10.1142/S0219887825502123  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1142/S0219887825502123