Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Well-posedness and convergence results for elliptic hemivariational inequalities

Sofonea, Mircea; Tarzia, Domingo AlbertoIcon
Fecha de publicación: 04/2025
Editorial: Biemdas Academic Publishers
Revista: Applied Set-Valued Analysis and Optimization
ISSN: 2562-7775
e-ISSN: 2562-7783
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Aplicada

Resumen

We consider an elliptic hemivariational inequality in a real reflexive Banach space X which, under appropriate assumptions on the data, has a unique solution u ∈ X. We recall the concepts of wellposedness in the sense of Tykhonov and Levitin-Polyak for this inequality, and then we extend these concepts by introducing new well-posedness concepts, constructed with a larger set of approximating sequences. We also prove that, under additional assumptions, these new well-posedness concepts are optimal in the sense that all the sequences of elements of X which converge to the solution u are approximating sequences. This result, presented in Theorem 4.1, provides necessary and sufficient conditions for any sequence {un} ⊂ X which guarantees that it converges to u and, therefore, it represents a convergence criterion to the solution of the hemivariational inequality. This criterion can be used in various applications. To provide an example, we illustrate its use in the study of a penalty method associated to an elliptic hemivariational inequality which describes the equilibrium of an elastic membrane in contact with a obstacle, the so-called foundation.
Palabras clave: Well-posed problem , Convergence results , Elliptic hemivariational inequalities
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 215.2Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/274443
URL: https://asvao.biemdas.com/archives/1956
DOI: http://dx.doi.org/10.23952/asvao.7.2025.1.01
Colecciones
Articulos(CCT - ROSARIO)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Citación
Sofonea, Mircea; Tarzia, Domingo Alberto; Well-posedness and convergence results for elliptic hemivariational inequalities; Biemdas Academic Publishers; Applied Set-Valued Analysis and Optimization; 7; 1; 4-2025; 1-21
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES