Mostrar el registro sencillo del ítem

dc.contributor.author
Cirilo, Diego Julio  
dc.contributor.author
Sanchez, Norma G.  
dc.date.available
2025-10-31T11:47:49Z  
dc.date.issued
2025-01  
dc.identifier.citation
Cirilo, Diego Julio; Sanchez, Norma G.; Classical (“ontological”) dual states in quantum theory and the minimal group representation Hilbert space; American Institute of Physics; APL Quantum; 2; 1; 1-2025; 1-14  
dc.identifier.issn
2835-0103  
dc.identifier.uri
http://hdl.handle.net/11336/274439  
dc.description.abstract
We investigate the classical aspects of quantum theory and under which description quantum theory does appear classical. Although such descriptions or variables are known as “ontological” or “hidden,” they are not hidden at all but are dual classical states (in the sense of the general classical–quantum duality of nature). We analyze and interpret the dynamical scenario in an inherent quantum structure: (i) We show that the use of the known ∣φ⟩ states in the circle [F. London, Z. Phys. 37, 915 (1926) and G. ’t Hooft, “The hidden ontological variable in quantum harmonic oscillators,” arXiv 2407.18153 (2024)] takes a true dimension only when the system is subjected to the minimal group representation action of the metaplectic group Mp(n). The Mp(n) Hermitian structure fully covers the symplectic Sp(n) group and, in certain cases, OSp(n). (ii) We compare the circle ∣φ⟩ states and the cylinder ∣ξ⟩ states in configuration space with the two sectors of the full Mp(2) Hilbert space corresponding to the even and odd n harmonic oscillators and their total sum. (iii) We compute the projections of the Mp(2) states on the circle ⟨φ∣ and cylinder ⟨ξ∣ states. The known London circle states are not normalizable. We compute here the general coset coherent states ⟨α,φ∣ in the circle, with α being the coherent complex parameter. It allows full normalizability of the complete set of the circle states. (iv) The London states (ontological in ’t Hooft’s description) completely classicalize the inherent quantum structure only under the action of the Mp(n) minimal group representation. (v) For the coherent states in the cylinder (configuration space), all functions are analytic in thedisk∣z = ω exp(−iφ)∣ < 1.For the general coset coherent states ∣α,φ⟩in the circle,the complex variable isz′ = z exp( −i α∗/2):Theanalyticfunction is modified by the complex phase (φ−α∗/2). (vi) The analyticity ∣z′∣ = ∣z∣e(−Imα/2) < 1 occurs when Imα ≠ 0 because of normalizability and Imα >0 because of the identity condition. The circle topology induced by the ⟨α,φ∣ coset coherent state also modifies the ratio of the disk due to the displacement by the coset. (vii) For the coset coherent cylinder states in configuration space, the classicalization is stronger due to screening exponential factors exp(−2n^2) , e−(2n+1/2), and exp(−(2n+1/2)^2) for large n arising in the Mp(2) projections on them. The generalized Wigner function shows a bell-shaped distribution and stronger classicalization than the square norm functions. The application of the minimal group representation immediately classicalizes the system, with Mp(2) emerging as the group of the classical–quantum duality symmetry.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Institute of Physics  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
MINIMAL GROUP REPRESENTATION PRINCIPLE  
dc.subject
COHERENT STATES  
dc.subject
CLASSICAL-QUANTUM DUALITY  
dc.subject
METAPLECTIC GROUP  
dc.subject.classification
Física de Partículas y Campos  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Física Atómica, Molecular y Química  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Classical (“ontological”) dual states in quantum theory and the minimal group representation Hilbert space  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-10-31T10:38:22Z  
dc.journal.volume
2  
dc.journal.number
1  
dc.journal.pagination
1-14  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Cirilo, Diego Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina  
dc.description.fil
Fil: Sanchez, Norma G.. Centre National de la Recherche Scientifique; Francia. Sorbonne University; Francia  
dc.journal.title
APL Quantum  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/apq/article/2/1/016104/3329660/Classical-ontological-dual-states-in-quantum  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1063/5.0247698