Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

On the thinness of trees

Bonomo, FlaviaIcon ; Brandwein, EricIcon ; González, Carolina LucíaIcon ; Sansone, AgustínIcon
Fecha de publicación: 04/2025
Editorial: Elsevier Science
Revista: Discrete Applied Mathematics
ISSN: 0166-218X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación; Matemática Aplicada

Resumen

The study of structural graph width parameters like tree-width, clique-width and rank-width has been ongoing during the last five decades, and their algorithmic use has also been increasing (Cygan et al., 2015). New width parameters continue to be defined, for example, MIM-width in 2012, twin-width in 2020, and mixed-thinness, a generalization of thinness, in 2022.The concept of thinness of a graph was introduced in 2007 by Mannino, Oriolo, Ricci and Chandran, and it can be seen as a generalization of interval graphs, which are exactly the graphs with thinness equal to one. This concept is interesting because if a representation of a graph as a k-thin graph is given for a constant value k, then several known NP-complete problems can be solved in polynomial time. Some examples are the maximum weighted independent set problem, solved in the seminal paper by Mannino et al., and the capacitated coloring with fixed number of colors (Bonomo, Mattia and Oriolo, 2011).In this work we present a constructive O(nlog(n))-time algorithm to compute the thinness for any given n-vertex tree, along with a corresponding thin representation. We use intermediate results of this construction to improve known bounds of the thinness of some special families of trees.
Palabras clave: Trees , Thinness , Polynomial time algorithm
Ver el registro completo
 
Archivos asociados
Tamaño: 670.6Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/274438
URL: https://linkinghub.elsevier.com/retrieve/pii/S0166218X24005468
DOI: http://dx.doi.org/10.1016/j.dam.2024.12.027
Colecciones
Articulos(ICC)
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Citación
Bonomo, Flavia; Brandwein, Eric; González, Carolina Lucía; Sansone, Agustín; On the thinness of trees; Elsevier Science; Discrete Applied Mathematics; 365; 4-2025; 39-60
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES