Mostrar el registro sencillo del ítem

dc.contributor.author
Pecker Marcosig, Ezequiel  
dc.contributor.author
Giribet, Juan Ignacio  
dc.contributor.author
Castro, Rodrigo Daniel  
dc.date.available
2025-10-31T11:47:27Z  
dc.date.issued
2025-03  
dc.identifier.citation
Pecker Marcosig, Ezequiel; Giribet, Juan Ignacio; Castro, Rodrigo Daniel; Hybrid resource allocation control in cyber-physical systems: a novel simulation-driven methodology with applications to UAVs; Sage Publications Ltd; Simulation; 101; 5; 3-2025; 597-619  
dc.identifier.issn
0037-5497  
dc.identifier.uri
http://hdl.handle.net/11336/274437  
dc.description.abstract
Designing hybrid controllers for cyber-physical systems (CPSs) where computational and physical components influence each other is a challenging task, as it requires considering the performance of very different types of dynamics simultaneously. Meanwhile, controlling each of these dynamics separately can lead to unacceptable results. Common approaches to controller design rely on the use of analytical methods. Although this approach can provide formal guarantees of stability and performance, the analytical design of hybrid controllers can become quite cumbersome. Alternatively, modeling and simulation (M&S)-based design techniques have proven successful for hybrid controllers, providing robust results based on Monte Carlo techniques. This requires simulation models and platforms capable of seamlessly composing the underlying hybrid domains. Unmanned Aerial Vehicles (UAVs) are CPSs with sensitive physical–computational couplings. We address the development of a hybrid model and simulation platform for a data collection application involving UAVs with onboard data processing. The quality of control (QoC) of the physical dynamics must be ensured together with the quality of service (QoS) of the onboard software competing for scarce processing resources. In this scenario, it is imperative to find safe trade-offs between flight stability and processing throughput that can adapt to uncertain environments. The goal is to design a hybrid supervisory controller that dynamically adapts the use of resources to balance the performance of both aspects in a CPS, while ensuring system-level QoS. We present the end-to-end M&S-based design methodology, which can be regarded as a design template for a broader class of CPSs.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Sage Publications Ltd  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Cyber-Physical Systems  
dc.subject
Hybrid Control  
dc.subject
Modeling and Simulation (M&S)  
dc.subject
Unmanned Aerial Vehicles (UAVs)  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Hybrid resource allocation control in cyber-physical systems: a novel simulation-driven methodology with applications to UAVs  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-10-31T10:35:58Z  
dc.journal.volume
101  
dc.journal.number
5  
dc.journal.pagination
597-619  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Pecker Marcosig, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina  
dc.description.fil
Fil: Giribet, Juan Ignacio. Departamento de Ingenieria ; Universidad de San Andres; . Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Castro, Rodrigo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina  
dc.journal.title
Simulation  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://journals.sagepub.com/doi/10.1177/00375497241313404  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1177/00375497241313404