Mostrar el registro sencillo del ítem
dc.contributor.author
Shevchenko, Victoria
dc.contributor.author
Benn, R. Austin
dc.contributor.author
Scholz, Robert
dc.contributor.author
Wei, Wei
dc.contributor.author
Pallavicini, Carla
dc.contributor.author
Klatzmann, Ulysse
dc.contributor.author
Alberti, Francesco
dc.contributor.author
Satterthwaite, Theodore D.
dc.contributor.author
Wassermann, Demian
dc.contributor.author
Bazin, Pierre-Louis
dc.contributor.author
Margulies, Daniel S.
dc.date.available
2025-10-31T11:45:58Z
dc.date.issued
2025-01
dc.identifier.citation
Shevchenko, Victoria; Benn, R. Austin; Scholz, Robert; Wei, Wei; Pallavicini, Carla; et al.; A comparative machine learning study of schizophrenia biomarkers derived from functional connectivity; Nature; Scientific Reports; 15; 1; 1-2025; 1-14
dc.identifier.issn
2045-2322
dc.identifier.uri
http://hdl.handle.net/11336/274434
dc.description.abstract
Functional connectivity holds promise as a biomarker of schizophrenia. Yet, the high dimensionality of predictive models trained on functional connectomes, combined with small sample sizes in clinical research, increases the risk of overfitting. Recently, low-dimensional representations of the connectome such as macroscale cortical gradients and gradient dispersion have been proposed, with studies noting consistent gradient and dispersion differences in psychiatric conditions. However, it is unknown which of these derived measures has the highest predictive capacity and how they compare to raw functional connectivity specifically in the case of schizophrenia. Our study evaluates which connectome features derived from resting state functional MRI — functional connectivity, gradients, or gradient dispersion — best identify schizophrenia. To this end, we leveraged data of 936 individuals from three large open-access datasets: COBRE, LA5c, and SRPBS-1600. We developed a pipeline which allows us to aggregate over a million different features and assess their predictive potential in a single, computationally efficient experiment. We selected top 1% of features with the largest permutation feature importance and trained 13 classifiers on them using 10-fold cross-validation. Our findings indicate that functional connectivity outperforms its low-dimensional derivatives such as cortical gradients and gradient dispersion in identifying schizophrenia (Mann–Whitney test conducted on test accuracy: connectivity vs. 1st gradient: U = 142, p < 0.003; connectivity vs. neighborhood dispersion: U = 141, p = 0.004). Additionally, we demonstrated that the edges which contribute the most to classification performance are the ones connecting primary sensory regions. Functional connectivity within the primary sensory regions showed the highest discrimination capabilities between subjects with schizophrenia and neurotypical controls. These findings along with the feature selection pipeline proposed here will facilitate future inquiries into the prediction of schizophrenia subtypes and transdiagnostic phenomena.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Nature
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
fmri
dc.subject
schizophrenia
dc.subject
machine learning
dc.subject
Functional connectivity
dc.subject.classification
Otras Ciencias Físicas
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A comparative machine learning study of schizophrenia biomarkers derived from functional connectivity
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-10-31T10:36:43Z
dc.journal.volume
15
dc.journal.number
1
dc.journal.pagination
1-14
dc.journal.pais
Reino Unido
dc.description.fil
Fil: Shevchenko, Victoria. University of Oxford; Reino Unido
dc.description.fil
Fil: Benn, R. Austin. Universite de Paris. Umr - S1134 Biologie Integree Du Globule Rouge;
dc.description.fil
Fil: Scholz, Robert. University of Oxford; Reino Unido
dc.description.fil
Fil: Wei, Wei. Universite de Paris. Umr - S1134 Biologie Integree Du Globule Rouge;
dc.description.fil
Fil: Pallavicini, Carla. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
dc.description.fil
Fil: Klatzmann, Ulysse. Universite de Paris. Umr - S1134 Biologie Integree Du Globule Rouge;
dc.description.fil
Fil: Alberti, Francesco. Universite de Paris. Umr - S1134 Biologie Integree Du Globule Rouge;
dc.description.fil
Fil: Satterthwaite, Theodore D.. University of Pennsylvania; Estados Unidos
dc.description.fil
Fil: Wassermann, Demian. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Bazin, Pierre-Louis. No especifíca;
dc.description.fil
Fil: Margulies, Daniel S.. Universite de Paris. Umr - S1134 Biologie Integree Du Globule Rouge;
dc.journal.title
Scientific Reports
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-024-84152-2
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1038/s41598-024-84152-2
Archivos asociados