Mostrar el registro sencillo del ítem

dc.contributor.author
Shevchenko, Victoria  
dc.contributor.author
Benn, R. Austin  
dc.contributor.author
Scholz, Robert  
dc.contributor.author
Wei, Wei  
dc.contributor.author
Pallavicini, Carla  
dc.contributor.author
Klatzmann, Ulysse  
dc.contributor.author
Alberti, Francesco  
dc.contributor.author
Satterthwaite, Theodore D.  
dc.contributor.author
Wassermann, Demian  
dc.contributor.author
Bazin, Pierre-Louis  
dc.contributor.author
Margulies, Daniel S.  
dc.date.available
2025-10-31T11:45:58Z  
dc.date.issued
2025-01  
dc.identifier.citation
Shevchenko, Victoria; Benn, R. Austin; Scholz, Robert; Wei, Wei; Pallavicini, Carla; et al.; A comparative machine learning study of schizophrenia biomarkers derived from functional connectivity; Nature; Scientific Reports; 15; 1; 1-2025; 1-14  
dc.identifier.issn
2045-2322  
dc.identifier.uri
http://hdl.handle.net/11336/274434  
dc.description.abstract
Functional connectivity holds promise as a biomarker of schizophrenia. Yet, the high dimensionality of predictive models trained on functional connectomes, combined with small sample sizes in clinical research, increases the risk of overfitting. Recently, low-dimensional representations of the connectome such as macroscale cortical gradients and gradient dispersion have been proposed, with studies noting consistent gradient and dispersion differences in psychiatric conditions. However, it is unknown which of these derived measures has the highest predictive capacity and how they compare to raw functional connectivity specifically in the case of schizophrenia. Our study evaluates which connectome features derived from resting state functional MRI — functional connectivity, gradients, or gradient dispersion — best identify schizophrenia. To this end, we leveraged data of 936 individuals from three large open-access datasets: COBRE, LA5c, and SRPBS-1600. We developed a pipeline which allows us to aggregate over a million different features and assess their predictive potential in a single, computationally efficient experiment. We selected top 1% of features with the largest permutation feature importance and trained 13 classifiers on them using 10-fold cross-validation. Our findings indicate that functional connectivity outperforms its low-dimensional derivatives such as cortical gradients and gradient dispersion in identifying schizophrenia (Mann–Whitney test conducted on test accuracy: connectivity vs. 1st gradient: U = 142, p < 0.003; connectivity vs. neighborhood dispersion: U = 141, p = 0.004). Additionally, we demonstrated that the edges which contribute the most to classification performance are the ones connecting primary sensory regions. Functional connectivity within the primary sensory regions showed the highest discrimination capabilities between subjects with schizophrenia and neurotypical controls. These findings along with the feature selection pipeline proposed here will facilitate future inquiries into the prediction of schizophrenia subtypes and transdiagnostic phenomena.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Nature  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
fmri  
dc.subject
schizophrenia  
dc.subject
machine learning  
dc.subject
Functional connectivity  
dc.subject.classification
Otras Ciencias Físicas  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A comparative machine learning study of schizophrenia biomarkers derived from functional connectivity  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-10-31T10:36:43Z  
dc.journal.volume
15  
dc.journal.number
1  
dc.journal.pagination
1-14  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Shevchenko, Victoria. University of Oxford; Reino Unido  
dc.description.fil
Fil: Benn, R. Austin. Universite de Paris. Umr - S1134 Biologie Integree Du Globule Rouge;  
dc.description.fil
Fil: Scholz, Robert. University of Oxford; Reino Unido  
dc.description.fil
Fil: Wei, Wei. Universite de Paris. Umr - S1134 Biologie Integree Du Globule Rouge;  
dc.description.fil
Fil: Pallavicini, Carla. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina  
dc.description.fil
Fil: Klatzmann, Ulysse. Universite de Paris. Umr - S1134 Biologie Integree Du Globule Rouge;  
dc.description.fil
Fil: Alberti, Francesco. Universite de Paris. Umr - S1134 Biologie Integree Du Globule Rouge;  
dc.description.fil
Fil: Satterthwaite, Theodore D.. University of Pennsylvania; Estados Unidos  
dc.description.fil
Fil: Wassermann, Demian. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Bazin, Pierre-Louis. No especifíca;  
dc.description.fil
Fil: Margulies, Daniel S.. Universite de Paris. Umr - S1134 Biologie Integree Du Globule Rouge;  
dc.journal.title
Scientific Reports  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-024-84152-2  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1038/s41598-024-84152-2