Mostrar el registro sencillo del ítem

dc.contributor.author
Zhang, Yong-Jiang  
dc.contributor.author
Cristiano, Piedad María  
dc.contributor.author
Zhang, Yong-Fei  
dc.contributor.author
Campanello, Paula Inés  
dc.contributor.author
Tan, Zheng-Hong  
dc.contributor.author
Zhang, Yi-Ping  
dc.contributor.author
Cao, Kun-Fang  
dc.contributor.author
Goldstein, Guillermo Hernan  
dc.contributor.other
Goldstein, Guillermo Hernan  
dc.contributor.other
Santiago, Louis S.  
dc.date.available
2025-10-30T12:33:50Z  
dc.date.issued
2016  
dc.identifier.citation
Zhang, Yong-Jiang; Cristiano, Piedad María; Zhang, Yong-Fei; Campanello, Paula Inés; Tan, Zheng-Hong; et al.; Carbon economy of subtropical forest; Springer Nature Switzerland AG; 2016; 337-356  
dc.identifier.isbn
978-3-319-27420-1  
dc.identifier.uri
http://hdl.handle.net/11336/274353  
dc.description.abstract
Compared to tropical and temperate forests, subtropical forests havereceived little attention in physiological and ecological studies until now, and the contribution of this ecosystem type to the global carbon cycle has not been fully assessed. In this chapter we discuss results on the carbon balance of subtropical forests at different spatial and temporal scales, analyze the potential limitation of seasonal low temperatures and water deficits on physiological processes of sub-11 tropical trees, and characterize the uniqueness of subtropical forest ecosystems in terms of carbon economy. Results from multiple techniques and scales were included in the carbon balance assessment. The largest two regions with subtropical forests are located in Asia and South America. The net ecosystem carbon gain of subtropical forests in these two regions, which have annual precipitations larger than 800 mm, is probably neither strongly limited by soil water availability nor byseasonal low temperatures. Relatively low evapotranspiration in the winter/dry season and high soil water-holding capacity help maintain good water availability for trees in most subtropical forests. High solar radiation, light penetration and low ecosystem respiration in winter may compensate for the negative effects of low temperatures on gross photosynthesis. Therefore, subtropical forests in many areas can assimilate carbon in excess of respiration throughout the year and they are, probably, among the largest terrestrial carbon sinks across terrestrial ecosystems worldwide. In addition, because leaf and ecosystem respiration respond to temperature changes to a larger extent compared to ecosystem carbon assimilation, a negative relationship between net ecosystem carbon gain and mean annual temperature was found in Asian subtropical and tropical forests. This relationship suggests that global warming may weaken the carbon sink strength of these forest ecosystems. These results indicate the important contribution of subtropical foreststo the global carbon cycle and the potentially negative response of these forests to global warming. We hope this information will promote additional physiological and ecological research and conservation in subtropical forests.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer Nature Switzerland AG  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Carbon sink  
dc.subject
Climate change  
dc.subject
Evapotranspiration  
dc.subject
Respiration  
dc.subject
Water deficit  
dc.subject.classification
Otros Tópicos Biológicos  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Carbon economy of subtropical forest  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/bookPart  
dc.type
info:ar-repo/semantics/parte de libro  
dc.date.updated
2025-10-29T13:31:11Z  
dc.journal.pagination
337-356  
dc.journal.pais
Suiza  
dc.journal.ciudad
Cham  
dc.description.fil
Fil: Zhang, Yong-Jiang. Harvard University; Estados Unidos  
dc.description.fil
Fil: Cristiano, Piedad María. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Ecología Funcional; Argentina  
dc.description.fil
Fil: Zhang, Yong-Fei. University of Texas at Austin; Estados Unidos  
dc.description.fil
Fil: Campanello, Paula Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Universidad Nacional de Misiones. Instituto de Biología Subtropical; Argentina  
dc.description.fil
Fil: Tan, Zheng-Hong. Chinese Academy of Sciences; República de China  
dc.description.fil
Fil: Zhang, Yi-Ping. Chinese Academy of Sciences; República de China  
dc.description.fil
Fil: Cao, Kun-Fang. Guangxi University; China  
dc.description.fil
Fil: Goldstein, Guillermo Hernan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentina. University of Miami; Estados Unidos  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-3-319-27422-5_16  
dc.conicet.paginas
680  
dc.source.titulo
Tropical Tree Physiology: Adaptations and Responses in a Changing Environment