Artículo
Enhanced Hydrogen Bonding by Urea Functionalization Tunes the Stability and Biological Properties of Peptide Amphiphiles
Xing, Huihua; Wigham, Caleb; Lee, Sieun Ruth; Pereira, Aramis J.; de Campos, Luana J.; Picco, Agustin Silvio
; Huck Iriart, Cristián
; Escudero, Carlos; Perez Chirinos, Laura; Gajaweera, Sandun; Comer, Jeffrey; Sasselli, Ivan R.; Stupp, Samuel I.; Zha, R. Helen; Conda Sheridan, Martin
; Huck Iriart, Cristián
; Escudero, Carlos; Perez Chirinos, Laura; Gajaweera, Sandun; Comer, Jeffrey; Sasselli, Ivan R.; Stupp, Samuel I.; Zha, R. Helen; Conda Sheridan, Martin
Fecha de publicación:
04/2024
Editorial:
American Chemical Society
Revista:
Biomacromolecules
e-ISSN:
1526-4602
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Self-assembled nanostructures such as those formed by peptide amphiphiles (PAs) are of great interest in biological and pharmacological applications. Herein, a simple and widely applicable chemical modification, a urea motif, was included in the PA’s molecular structure to stabilize the nanostructures by virtue of intermolecular hydrogen bonds. Since the amino acid residue nearest to the lipid tail is the most relevant for stability, we decided to include the urea modification at that position. We prepared four groups of molecules (13 PAs in all), with varying levels of intermolecular cohesion, using amino acids with distinct β-sheet promoting potential and/or containing hydrophobic tails of distinct lengths. Each subset contained one urea-modified PA and nonmodified PAs, all with the same peptide sequence. The varied responses of these PAs to variations in pH, temperature, counterions, and biologically related proteins were examined using microscopic, X-ray, spectrometric techniques, and molecular simulations. We found that the urea group contributes to the stabilization of the morphology and internal arrangement of the assemblies against environmental stimuli for all peptide sequences. In addition, microbiological and biological studies were performed with the cationic PAs. These assays reveal that the addition of urea linkages affects the PA–cell membrane interaction, showing the potential to increase the selectivity toward bacteria. Our data indicate that the urea motif can be used to tune the stability of a wide range of PA nanostructures, allowing flexibility on the biomaterial’s design and opening a myriad of options for clinical therapies.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos (ITECA)
Articulos de INSTITUTO DE TECNOLOGÍAS EMERGENTES Y CIENCIAS APLICADAS
Articulos de INSTITUTO DE TECNOLOGÍAS EMERGENTES Y CIENCIAS APLICADAS
Articulos(INIFTA)
Articulos de INST.DE INV.FISICOQUIMICAS TEORICAS Y APLIC.
Articulos de INST.DE INV.FISICOQUIMICAS TEORICAS Y APLIC.
Citación
Xing, Huihua; Wigham, Caleb; Lee, Sieun Ruth; Pereira, Aramis J.; de Campos, Luana J.; et al.; Enhanced Hydrogen Bonding by Urea Functionalization Tunes the Stability and Biological Properties of Peptide Amphiphiles; American Chemical Society; Biomacromolecules; 25; 5; 4-2024; 2823-2837
Compartir
Altmétricas