Mostrar el registro sencillo del ítem

dc.contributor.author
Ricetti, Lorenzo  
dc.contributor.author
Hurtado, Santiago Ignacio  
dc.contributor.author
Zaninelli, Pablo Gabriel  
dc.contributor.author
Agosta, Eduardo A.  
dc.date.available
2025-10-29T11:50:24Z  
dc.date.issued
2025-05  
dc.identifier.citation
Ricetti, Lorenzo; Hurtado, Santiago Ignacio; Zaninelli, Pablo Gabriel; Agosta, Eduardo A.; Determining the percentile threshold of daily extreme precipitation, methods evaluation; Springer; Stochastic Environmental Research And Risk Assessment; 39; 7; 5-2025; 2887-2902  
dc.identifier.issn
1436-3240  
dc.identifier.uri
http://hdl.handle.net/11336/274197  
dc.description.abstract
The study of extreme precipitation events has become a major research topic due to its importance in a climate change context. The determination of extreme events and their study usually depend on the estimation of daily percentiles. Therefore, this research evaluates the performance of different approaches and methods to estimate daily precipitation percentiles. To achieve this, simulations of five different climate regimes were conducted to evaluate each method's performance. Four distinctive factors were considered: the percentile to be estimated, the usage of a wet day or all days, the estimation method, and the usage of a smoothing technique after the estimation. Regarding the usage of wet days, we found that a wet-day threshold of 0 mm generally performed better than a 1 mm threshold. Moving window approaches yielded better results than methods using only the calendar day, leveraging larger data subsets. Smoothing techniques, particularly Generalized Additive Models (GAM), significantly improved performance. The choice of wet-day definition and percentile depends on research goals, affecting threshold levels and the number of extreme events, which influence statistical analyses. Higher percentiles showed decreased method performance, being less representative. Given potential biases with wet-day thresholds and minimal performance differences, we recommend using all days for percentile estimation in future research. For this case, the moving empirical percentile estimation method with GAM smoothing is advised. Nevertheless, optimal techniques may vary by climate. Lastly, the differences in the annual frequency of extreme events index derived from ERA5-Land data using different percentile estimation methods were analyzed. The findings suggest that the choice of percentile estimation method has a greater impact on analyzing time series variability but less influence on linear trend analysis.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Percentile  
dc.subject
Peak over threshold  
dc.subject
Extreme event  
dc.subject
Annual cycle  
dc.subject
Heavy precipitation  
dc.subject
Extreme indices  
dc.subject.classification
Investigación Climatológica  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Determining the percentile threshold of daily extreme precipitation, methods evaluation  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-10-24T15:45:19Z  
dc.journal.volume
39  
dc.journal.number
7  
dc.journal.pagination
2887-2902  
dc.journal.pais
Alemania  
dc.description.fil
Fil: Ricetti, Lorenzo. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina  
dc.description.fil
Fil: Hurtado, Santiago Ignacio. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina  
dc.description.fil
Fil: Zaninelli, Pablo Gabriel. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Complutense de Madrid; España  
dc.description.fil
Fil: Agosta, Eduardo A.. No especifíca;  
dc.journal.title
Stochastic Environmental Research And Risk Assessment  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s00477-025-02998-y  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00477-025-02998-y