Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Evento

Explainable FA detection in single-lead signals acquired from portable smart-enabled ECG devices

Liberczuk, Sergio Javier; Garcia, Pedro; Barrera, Pedro; Bonomini, Maria PaulaIcon
Tipo del evento: Congreso
Nombre del evento: XXV Congreso Argentino de Bioingeniería. XIV Jornadas de Ingeniería Clínica.
Fecha del evento: 14/10/2025
Institución Organizadora: Sociedad Argentina de Bioingeniería;
Título del Libro: Advances in Bioengineering and Clinical Engineering 2025. Proceedings of the XXV Argentinian Congress of Bioengineering (SABI 2025), the XIV Clinical Engineering Conference, and the III Latin American Conference on Clinical Engineering (CLIC)
Editorial: Springer
ISBN: 978-3-032-06400-4
Idioma: Inglés
Clasificación temática:
Ingeniería Médica

Resumen

Atrial fibrillation is a cardiac condition characterized by an irregular and disorganized heart rhythm, which can be observed on an electrocardiogram (ECG) through a distinctive pattern recognizable by a cardiology specialist. Unlike a normal, coordinated heart rhythm, in atrial fibrillation the atria beat chaotically, increasing the risk of blood clots forming in the heart and leading to serious complications such as stroke. To address this issue, it is crucial to develop highly accurate and sensitive automated AF screening methods. However, many current AI-based approaches lack transparency, making it difficult to understand the underlying reasons behind screening decisions. This work employed explainable artificial intelligence (XAI) to identify AF in a more understandable and detailed way. This approach made it possible to expose the main physiological parameters that influence the detection of positive AF cases. The results obtained provided relevant information on the biological mechanisms involved while offering clear explanations that can help medical professionals better understand the decision-making process in the diagnosis of this cardiac condition.
Palabras clave: ATRIAL FIBRILLATION (AF) , EXPLAINABLE ARTIFICIAL INTELLIGENCE (XAI) , ECG-BASED SCREENING , SHAPLEY ADDITIVE EXPLANATIONS (SHAP) , XGBOOSTMODEL
Ver el registro completo
 
Archivos asociados
Tamaño: 2.638Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/274038
URL: https://link.springer.com/chapter/10.1007/978-3-032-06401-1_118
URL: https://doi.org/10.1007/978-3-032-06401-1_118
Colecciones
Eventos(IAM)
Eventos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Explainable FA detection in single-lead signals acquired from portable smart-enabled ECG devices; XXV Congreso Argentino de Bioingeniería. XIV Jornadas de Ingeniería Clínica.; Mar del Plata; Argentina; 2025; 1383-1397
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES