Mostrar el registro sencillo del ítem

dc.contributor.author
Rojas, Mariana Isabel  
dc.contributor.author
Gomez, Cesar Gerardo  
dc.contributor.author
Avalle, Lucia Bernardita  
dc.contributor.author
Linarez Pérez, Omar Ezequiel  
dc.date.available
2025-10-27T11:45:21Z  
dc.date.issued
2025-05  
dc.identifier.citation
Rojas, Mariana Isabel; Gomez, Cesar Gerardo; Avalle, Lucia Bernardita; Linarez Pérez, Omar Ezequiel; Electrocatalytic kinetics and mechanistic insights into indole oxidation reaction on highly oriented pyrolytic graphite electrodes; Springer; Journal of Solid State Electrochemistry (print); 29; 11; 5-2025; 4721-4733  
dc.identifier.issn
1432-8488  
dc.identifier.uri
http://hdl.handle.net/11336/274031  
dc.description.abstract
The kinetics and mechanism of the indole oxidation reaction (IOR) on a highly oriented pyrolytic graphite (HOPG) electrode were investigated using various electrochemical techniques. The HOPG electrode exhibited excellent electrocatalytic activity, reaching current densities of up to 35 µA/cm2 over a concentration range of 0.1 and 200.0 µM and a detection limit of 0.02 µM. Chronoamperometric transients were analyzed through a kinetic model that described the relationship between the observed current density and the distribution of free and occupied active sites on the electrode surface. The number of active sites was quantified, revealing a moderate turnover frequency (TOF) under non-saturating conditions, showing the efficiency of the electrode during IOR. Electrochemical impedance spectroscopy (EIS) was employed to characterize the electrode surface and electrode/electrolyte interface. The EIS spectra, fitted using an equivalent circuit model, allowed the evaluation of charge transfer resistance and effective capacitance as a function of indole concentration. This study highligThe kinetics and mechanism of the indole oxidation reaction (IOR) on a highly oriented pyrolytic graphite (HOPG) electrode were investigated using various electrochemical techniques. The HOPG electrode exhibited excellent electrocatalytic activity, reaching current densities of up to 35 µA/cm2 over a concentration range of 0.1 and 200.0 µM and a detection limit of 0.02 µM. Chronoamperometric transients were analyzed through a kinetic model that described the relationship between the observed current density and the distribution of free and occupied active sites on the electrode surface. The number of active sites was quantified, revealing a moderate turnover frequency (TOF) under non-saturating conditions, showing the efficiency of the electrode during IOR. Electrochemical impedance spectroscopy (EIS) was employed to characterize the electrode surface and electrode/electrolyte interface. The EIS spectra, fitted using an equivalent circuit model, allowed the evaluation of charge transfer resistance and effective capacitance as a function of indole concentration. This study highlights the technological importance of understanding IOR, especially in the development of sensors for clinical and environmental applications requiring precise detection and quantification of indole.hts the technological importance of understanding IOR, especially in the development of sensors for clinical and environmental applications requiring precise detection and quantification of indole.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
INDOLE OXIDATION REACTION  
dc.subject
HOPG  
dc.subject
ELECTROCHEMICAL ANALYSIS  
dc.subject
EIS  
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Electrocatalytic kinetics and mechanistic insights into indole oxidation reaction on highly oriented pyrolytic graphite electrodes  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-10-24T15:44:08Z  
dc.journal.volume
29  
dc.journal.number
11  
dc.journal.pagination
4721-4733  
dc.journal.pais
Alemania  
dc.description.fil
Fil: Rojas, Mariana Isabel. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina  
dc.description.fil
Fil: Gomez, Cesar Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina  
dc.description.fil
Fil: Avalle, Lucia Bernardita. Universidad Nacional de Córdoba. Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada; Argentina  
dc.description.fil
Fil: Linarez Pérez, Omar Ezequiel. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina  
dc.journal.title
Journal of Solid State Electrochemistry (print)  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s10008-025-06339-5  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10008-025-06339-5