Mostrar el registro sencillo del ítem
dc.contributor.author
Rojas, Mariana Isabel
dc.contributor.author
Gomez, Cesar Gerardo
dc.contributor.author
Avalle, Lucia Bernardita
dc.contributor.author
Linarez Pérez, Omar Ezequiel
dc.date.available
2025-10-27T11:45:21Z
dc.date.issued
2025-05
dc.identifier.citation
Rojas, Mariana Isabel; Gomez, Cesar Gerardo; Avalle, Lucia Bernardita; Linarez Pérez, Omar Ezequiel; Electrocatalytic kinetics and mechanistic insights into indole oxidation reaction on highly oriented pyrolytic graphite electrodes; Springer; Journal of Solid State Electrochemistry (print); 29; 11; 5-2025; 4721-4733
dc.identifier.issn
1432-8488
dc.identifier.uri
http://hdl.handle.net/11336/274031
dc.description.abstract
The kinetics and mechanism of the indole oxidation reaction (IOR) on a highly oriented pyrolytic graphite (HOPG) electrode were investigated using various electrochemical techniques. The HOPG electrode exhibited excellent electrocatalytic activity, reaching current densities of up to 35 µA/cm2 over a concentration range of 0.1 and 200.0 µM and a detection limit of 0.02 µM. Chronoamperometric transients were analyzed through a kinetic model that described the relationship between the observed current density and the distribution of free and occupied active sites on the electrode surface. The number of active sites was quantified, revealing a moderate turnover frequency (TOF) under non-saturating conditions, showing the efficiency of the electrode during IOR. Electrochemical impedance spectroscopy (EIS) was employed to characterize the electrode surface and electrode/electrolyte interface. The EIS spectra, fitted using an equivalent circuit model, allowed the evaluation of charge transfer resistance and effective capacitance as a function of indole concentration. This study highligThe kinetics and mechanism of the indole oxidation reaction (IOR) on a highly oriented pyrolytic graphite (HOPG) electrode were investigated using various electrochemical techniques. The HOPG electrode exhibited excellent electrocatalytic activity, reaching current densities of up to 35 µA/cm2 over a concentration range of 0.1 and 200.0 µM and a detection limit of 0.02 µM. Chronoamperometric transients were analyzed through a kinetic model that described the relationship between the observed current density and the distribution of free and occupied active sites on the electrode surface. The number of active sites was quantified, revealing a moderate turnover frequency (TOF) under non-saturating conditions, showing the efficiency of the electrode during IOR. Electrochemical impedance spectroscopy (EIS) was employed to characterize the electrode surface and electrode/electrolyte interface. The EIS spectra, fitted using an equivalent circuit model, allowed the evaluation of charge transfer resistance and effective capacitance as a function of indole concentration. This study highlights the technological importance of understanding IOR, especially in the development of sensors for clinical and environmental applications requiring precise detection and quantification of indole.hts the technological importance of understanding IOR, especially in the development of sensors for clinical and environmental applications requiring precise detection and quantification of indole.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
INDOLE OXIDATION REACTION
dc.subject
HOPG
dc.subject
ELECTROCHEMICAL ANALYSIS
dc.subject
EIS
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Electrocatalytic kinetics and mechanistic insights into indole oxidation reaction on highly oriented pyrolytic graphite electrodes
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-10-24T15:44:08Z
dc.journal.volume
29
dc.journal.number
11
dc.journal.pagination
4721-4733
dc.journal.pais
Alemania
dc.description.fil
Fil: Rojas, Mariana Isabel. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
dc.description.fil
Fil: Gomez, Cesar Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
dc.description.fil
Fil: Avalle, Lucia Bernardita. Universidad Nacional de Córdoba. Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada; Argentina
dc.description.fil
Fil: Linarez Pérez, Omar Ezequiel. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
dc.journal.title
Journal of Solid State Electrochemistry (print)
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s10008-025-06339-5
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10008-025-06339-5
Archivos asociados