Artículo
Electrophysiological and behavioral responses of elongated solifuge sensilla to mechanical stimuli
Kundu, PallabI; Oviedo Diego, Mariela Anahí
; Cargnelutti, Franco Ignacio
; Jones, R. Ryan; Garcia, Erika; Hebets, Eileen A.; Gaffin, Douglas D.
; Cargnelutti, Franco Ignacio
; Jones, R. Ryan; Garcia, Erika; Hebets, Eileen A.; Gaffin, Douglas D.
Fecha de publicación:
02/2025
Editorial:
Springer
Revista:
Journal Of Comparative Physiology A-sensory Neural And Behavioral Physiology
ISSN:
0340-7594
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A fundamental understanding of animal sensory systems is crucial for comprehending their interactions with the environment and with other conspecifics. However, knowledge gaps persist, particularly in arachnids like the order Solifugae. While certain solifuge setae and palpal papillae have been studied structurally and electrophysiologically, providing evidence of chemoreception and mechanoreception, the sensilla on their walking legs remain unexplored. Notably, elongated sensilla on the femur and tibia of the 4th walking legs resemble trichobothria in other arachnid orders yet their function remains unknown. Thus, this study investigates whether these sensilla serve a mechanosensory function. Using electrophysiological and behavioral assays on Eremobates pallipes (Eremobatidae), we assessed the response of the elongated 4th leg sensilla to– (i) air particle movement and– (ii) air pressure changes. Air particle movement stimuli were generated using a speaker placed in the near field of the elongated sensilla that emitted low-frequency pure tones (10–1000 Hz). Air pressure stimuli involved forceful blowing on the sensilla. No response to air particle movement was observed, but a mechanosensory response to air pressure stimuli was detected. Electrophysiological data identified a fast-adapting and fast-recovering cell, and behavioral observations revealed a startle response. Our electrophysiology results suggest a mechanosensory role of elongated sensilla on the 4th walking legs of solifuge, indicating that although they are not sensitive enough to detect air particle movement stimuli, they can receive and respond to air pressure stimuli. Our behavioral experiments similarly show that these sensilla are not sensitive enough to detect air particle movement but respond to more forceful mechanosensory stimuli.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IDEA)
Articulos de INSTITUTO DE DIVERSIDAD Y ECOLOGIA ANIMAL
Articulos de INSTITUTO DE DIVERSIDAD Y ECOLOGIA ANIMAL
Citación
Kundu, PallabI; Oviedo Diego, Mariela Anahí; Cargnelutti, Franco Ignacio; Jones, R. Ryan; Garcia, Erika; et al.; Electrophysiological and behavioral responses of elongated solifuge sensilla to mechanical stimuli; Springer; Journal Of Comparative Physiology A-sensory Neural And Behavioral Physiology; 211; 3; 2-2025; 277-292
Compartir
Altmétricas