Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Optimal Operation of Discretely Controlled Continuous Systems under Uncertainty

de Paula, MarianoIcon ; Martinez, Ernesto CarlosIcon
Fecha de publicación: 10/2012
Editorial: American Chemical Society
Revista: Industrial & Engineering Chemical Research
ISSN: 0888-5885
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Sistemas de Automatización y Control

Resumen

Discretely controlled continuous systems constitute a special class of continuous-time hybrid dynamical systems where timely switching to alternative control modes is used for dynamic optimization in uncertain environments. Each mode implements a parametrized feedback control law until a stopping condition triggers due to the activation of a constraint related to states, controls, or disturbances. For optimal operation under uncertainty, a novel simulation-based algorithm that combinesdynamic programming with event-driven execution and Gaussian processes is proposed to learn a switching policy for mode selection. To deal with the size/dimension of the state space and a continuum of control mode parameters, Bayesian active learning is proposed using a utility function that trades off information content with policy improvement. Probabilistic models of the state transition dynamics following each mode execution are fitted upon data obtained by increasingly biasing operating conditions. Throughput maximization in a hybrid chemical plant is used as a representative case study.
Palabras clave: Optimal Operation , Discretely Controlled Continuous Systems , Reinforcement Learning , Uncertainty
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 4.124Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/273867
URL: http://pubs.acs.org/doi/abs/10.1021/ie301015z
DOI: http://dx.doi.org/10.1021/ie301015z
Colecciones
Articulos(CCT - TANDIL)
Articulos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Articulos(INGAR)
Articulos de INST.DE DESARROLLO Y DISEÑO (I)
Citación
de Paula, Mariano; Martinez, Ernesto Carlos; Optimal Operation of Discretely Controlled Continuous Systems under Uncertainty; American Chemical Society; Industrial & Engineering Chemical Research; 51; 42; 10-2012; 13743-13764
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES