Mostrar el registro sencillo del ítem
dc.contributor.author
Pallarola, Diego Andres
dc.contributor.author
Von Bilderling, Catalina
dc.contributor.author
Pietrasanta, Lia
dc.contributor.author
Queralto, Nuria
dc.contributor.author
Knoll, Wolfgang
dc.contributor.author
Battaglini, Fernando
dc.contributor.author
Azzaroni, Omar
dc.date.available
2025-10-22T12:49:27Z
dc.date.issued
2012-04
dc.identifier.citation
Pallarola, Diego Andres; Von Bilderling, Catalina; Pietrasanta, Lia; Queralto, Nuria; Knoll, Wolfgang; et al.; Recognition-driven layer-by-layer construction of multiprotein assemblies on surfaces: a biomolecular toolkit for building up chemoresponsive bioelectrochemical interfaces; Royal Society of Chemistry; Physical Chemistry Chemical Physics; 14; 31; 4-2012; 11027-11039
dc.identifier.issn
1463-9076
dc.identifier.uri
http://hdl.handle.net/11336/273853
dc.description.abstract
The development of soft bioelectronic interfaces with accurate compositional and topological control of the supramolecular architecture attracts intense interest in the fast-growing field of bioelectronics and biosensing. The present study explores the recognition-driven layer-by-layer assembly of glycoenzymes onto electrode surfaces. The design of the multi-protein interfacial architecture is based on the multivalent supramolecular carbohydrate?lectin interactions between redox glycoproteins and concanavalin A (Con A) derivatives. Specifically, [Os(bpy)2Clpy]2+-tagged Con A (Os-Con A) and native Con A were used to direct the assembly of horseradish peroxidase (HRP) and glucose oxidase (GOx) in a stepwise topologically controlled procedure. In our designed configuration, GOx acts as the biorecognition element to glucose stimulus, while HRP acts as the transducing element. Surface plasmon resonance (SPR) spectroscopy and quartz crystal microbalance with dissipation (QCM-D) results are combined to give a close representation of the protein surface coverage and the content of water in the protein assembly. The characterization is complemented with in situ atomic force microscopy (AFM) to give a topographical description of the layers assemblage. Electrochemical (EC) techniques were used to characterize the functional features of the spontaneously self-assembled biohybrid architecture, showing that the whole system presents efficient electron transfer and mass transport processes being able to transform micromolar glucose concentration into electrical information. In this way the combination of the electroactive and nonelectroactive Con A provides an efficient strategy to control the position and composition of the protein layers via recognition-driven processes, which defines its sensitivity toward glucose. Furthermore, the incorporation of dextran as a permeable interlayer able to bind Con A promotes the physical separation of the biochemical and transducing processes, thus enhancing the magnitude of the bioelectrochemical signal. We consider that these results are relevant for the nanoconstruction of functional biointerfaces provided that our experimental evidence reveals the possibility of locally addressing recognition, transduction and amplification elements in interfacial ensembles via LbL recognition-driven processes.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Royal Society of Chemistry
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Soft Nanotechnology
dc.subject
Layer-by-Layer Assembly
dc.subject
Recognition-Driven Assembly
dc.subject
Bioelectrochemistry
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Recognition-driven layer-by-layer construction of multiprotein assemblies on surfaces: a biomolecular toolkit for building up chemoresponsive bioelectrochemical interfaces
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-10-22T12:05:47Z
dc.journal.volume
14
dc.journal.number
31
dc.journal.pagination
11027-11039
dc.journal.pais
Reino Unido
dc.description.fil
Fil: Pallarola, Diego Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
dc.description.fil
Fil: Von Bilderling, Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Microscopías Avanzadas; Argentina
dc.description.fil
Fil: Pietrasanta, Lia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Queralto, Nuria. Max-planck-intitut Für Polymerforschung; Alemania
dc.description.fil
Fil: Knoll, Wolfgang. Austrian Institute of Technology; Austria
dc.description.fil
Fil: Battaglini, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
dc.description.fil
Fil: Azzaroni, Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
dc.journal.title
Physical Chemistry Chemical Physics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://pubs.rsc.org/en/content/articlelanding/2012/cp/c2cp41225j
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1039/C2CP41225J
Archivos asociados