Artículo
Ugropy : An Extensible Python Package for Thermodynamic Model Functional Group Identification via Mathematical Optimization
Fecha de publicación:
08/2025
Editorial:
American Chemical Society
Revista:
Industrial & Engineering Chemical Research
ISSN:
0888-5885
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Group contribution models are widely used for property estimation in chemical engineering. However, the identification of functional groups remains a challenge, particularly for large data sets and automated workflows. This work introduces an algorithm for functional group detection based on the Set Cover Problem, formulated as an integer linear programming optimization problem. The method ensures optimality, nonoverlapping assignments and avoids heuristic dependencies. The algorithm is implemented in ugropy, an open-source Python library supporting several group contribution models (Joback, UNIFAC, Dortmund, PSRK, Alshehri). Ugropy allows integration with cheminformatics and machine learning pipelines and supports user-defined models and solvers.
Palabras clave:
UNIFAC
,
Thermodynamic
,
Group Contribution Models
,
Group detection
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IPQA)
Articulos deINSTITUTO DE INVESTIGACION Y DESARROLLO EN INGENIERIA DE PROCESOS Y QUIMICA APLICADA
Articulos deINSTITUTO DE INVESTIGACION Y DESARROLLO EN INGENIERIA DE PROCESOS Y QUIMICA APLICADA
Citación
Brandolin, Salvador Eduardo; Benelli, Federico Ezequiel; Magario, Ivana; Scilipoti, José Antonio; Ugropy : An Extensible Python Package for Thermodynamic Model Functional Group Identification via Mathematical Optimization; American Chemical Society; Industrial & Engineering Chemical Research; 64; 35; 8-2025; 17217-17227
Compartir
Altmétricas