Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Polyhedrization of an arbitrary 3D point set

Idelsohn, Sergio RodolfoIcon ; Calvo, Nestor AlbertoIcon ; Oñate, Eugenio
Fecha de publicación: 12/2003
Editorial: Elsevier Science Sa
Revista: Computer Methods in Applied Mechanics and Engineering
ISSN: 0045-7825
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería Oceanográfica

Resumen

The extended Delaunay tessellation (EDT) is presented in this paper as the unique partition of a node set into polyhedral regions defined by nodes lying on the nearby Voronoï spheres. Until recently, all the FEM mesh generators were limited to the generation of tetrahedral or hexahedral elements (or triangular and quadrangular in 2D problems). The reason for this limitation was the lack of any acceptable shape function to be used in other kind of geometrical elements. Nowadays, there are several acceptable shape functions for a very large class of polyhedra. These new shape functions, together with the EDT, gives an optimal combination and a powerful tool to solve a large variety of physical problems by numerical methods. The domain partition into polyhedra presented here does not introduce any new node nor change any node position. This makes this process suitable for Lagrangian problems and meshless methods in which only the connectivity information is used and there is no need for any expensive smoothing process.Given a 3D point set, the problem of defining the volume associated, dividing it into a set of regions (elements) and defining a boundary surface is tackled. Several physical problems need to define volume domains, boundary surfaces and approximating functions from a given point distribution. This is for instance the case of particle methods, in which all the information is the particle positions and there are not boundary surfaces definition. Until recently, all the FEM mesh generators were limited to the generation of simple elements as tetrahedral or hexahedral elements (or triangular and quadrangular in 2D problems). The reason of this limitation was the lack of any acceptable shape function to be used in other kind of geometrical elements. Nowadays, there are several acceptable shape functions for a very large class of polyhedra. These new shape functions, together with a generalization of the Delaunay tessellation presented in this paper, gives an optimal marriage and a powerful tool to solve a large variety of physical problems by numerical methods. The domain partition into polyhedra presented here is not a standard mesh generation. The problem here is: for a given node distribution to find a suitable boundary surface and a suitable mesh to be used in the solution of a physical problem by a numerical method. To include new nodes or change their positions is not allowed.
Palabras clave: Delaunay , Lagrangian Formulations , Particles Methods , Polyhedral Mesh Generation
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 782.6Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/27373
URL: http://www.sciencedirect.com/science/article/pii/S0045782503002986
DOI: http://dx.doi.org/10.1016/S0045-7825(03)00298-6
Colecciones
Articulos(INTEC)
Articulos de INST.DE DES.TECNOL.PARA LA IND.QUIMICA (I)
Citación
Idelsohn, Sergio Rodolfo; Calvo, Nestor Alberto; Oñate, Eugenio; Polyhedrization of an arbitrary 3D point set; Elsevier Science Sa; Computer Methods in Applied Mechanics and Engineering; 192; 12-2003; 2649-2667
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES