Mostrar el registro sencillo del ítem

dc.contributor.author
Calomino, Ismael Maria  
dc.contributor.author
Pelaitay, Gustavo Andrés  
dc.contributor.author
Valverde, Lucia Florencia  
dc.date.available
2025-10-17T11:35:44Z  
dc.date.issued
2025-05  
dc.identifier.citation
Calomino, Ismael Maria; Pelaitay, Gustavo Andrés; Valverde, Lucia Florencia; Heyting Algebras with Kalman-Galois Connections; Springer; Studia Logica; 5-2025; 1-37  
dc.identifier.issn
0039-3215  
dc.identifier.uri
http://hdl.handle.net/11336/273618  
dc.description.abstract
Inspired by Kalman’s work, a categorical equivalence has been proved between Heyting algebras and centered Nelson algebras. In this paper, we investigate Galois connections on Heyting algebras, specifically introducing a type of Galois connection known as Kalman-Galois connections. This new concept allows us to extend the previously established equivalence to Heyting algebras with Kalman-Galois connections (KG-algebras) and to a specific class of Nelson algebras endowed with a unary operator (GNc-algebras). We provide several examples to illustrate and motivate the study of these new classes of algebras. Additionally, by utilizing Hasimoto´s results on Heyting algebras with unary operators, we characterize the subdirectly irreducible KG-algebras, with a particular focus on the simple ones. Furthermore, for a given GNc-algebra, we prove that three distinct KG-algebras can be constructed from it, which are ultimately isomorphic. Finally, we generalize Monteiro´s construction of centered Nelson algebras within the framework of GNc-algebras and establish the relationship between this construction and Kalman’s construction for KG-algebras. We also specialize the study of Kalman-Galois connections to the variety of prelinear Heyting algebras.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
HEYTING ALGEBRA  
dc.subject
KALMAN-GALOIS CONNECTIONS  
dc.subject
CATEGORICAL EQUIVALENCE  
dc.subject
MONTEIRO'S CONSTRUCTION  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Heyting Algebras with Kalman-Galois Connections  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-10-16T10:47:52Z  
dc.journal.pagination
1-37  
dc.journal.pais
Polonia  
dc.description.fil
Fil: Calomino, Ismael Maria. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Pelaitay, Gustavo Andrés. Universidad Nacional de San Juan. Facultad de Filosofía, Humanidades y Artes. Instituto de Ciencias Básicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina  
dc.description.fil
Fil: Valverde, Lucia Florencia. Universidad Nacional de San Juan. Facultad de Filosofía, Humanidades y Artes. Instituto de Ciencias Básicas; Argentina  
dc.journal.title
Studia Logica  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s11225-025-10179-9  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11225-025-10179-9