Mostrar el registro sencillo del ítem

dc.contributor.author
Andruchow, Esteban  
dc.contributor.author
Corach, Gustavo  
dc.contributor.author
Recht, Lázaro  
dc.contributor.other
Cardona, Alexander  
dc.contributor.other
Reyes Lega, Andrés  
dc.date.available
2025-10-16T12:06:51Z  
dc.date.issued
2025  
dc.identifier.citation
Andruchow, Esteban; Corach, Gustavo; Recht, Lázaro; Homogeneous spaces of operators; Springer Verlag Berlín; 2025; 121-167  
dc.identifier.isbn
978-3-031-82318-3  
dc.identifier.uri
http://hdl.handle.net/11336/273584  
dc.description.abstract
Let A be a unital C^∗-algebra. In this chapter (and in the next one) we study the Poincaré half-space H of A H:={h ∈ A : Im(h) is positive and invertible}. In the case of theC^*-algebra B(L) of bounded linear operators on the Hilbert space L, the space H is isomorphic to the tangent bundle of the set of inner products on L. Also consider the following situation. Let E be a complex vector bundle over a compact space M provided with a Hermitian structure. Consider the C^*-algebra Γ(End(E)) of continuous sections of the endomorphism bundle of E. The Poincaré space of Γ(End(E)) consists of the elements of the form X+ ia, where a is a Hermitian structure on E and X is infinitesimal deformation of a. The space H is naturally isomorphic to the following spaces: 1. the Poincaré disk D of A: D:={z ∈ A}: ||z||<1}; 2. the space Qρ of A-module projections q acting in A × A which decompose the form θ = ρ ·, · induced by a fixed symmetry\rho ρ in A × A, in the following sense: θ is positive in R(q) and negative in N(q).  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer Verlag Berlín  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
PROJECTIONS  
dc.subject
POSITIVE OPERATORS  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Homogeneous spaces of operators  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/bookPart  
dc.type
info:ar-repo/semantics/parte de libro  
dc.date.updated
2025-10-07T09:18:35Z  
dc.journal.pagination
121-167  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina  
dc.description.fil
Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina  
dc.description.fil
Fil: Recht, Lázaro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/978-3-031-82319-0_3  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-3-031-82319-0_3  
dc.conicet.paginas
294  
dc.source.titulo
Geometry, topology and operator algebras?global analysis, invariants and their significance in theoretical physics