Mostrar el registro sencillo del ítem
dc.contributor.author
Andruchow, Esteban
dc.contributor.author
Corach, Gustavo
dc.contributor.author
Recht, Lázaro
dc.contributor.other
Cardona, Alexander
dc.contributor.other
Reyes Lega, Andrés
dc.date.available
2025-10-16T12:06:51Z
dc.date.issued
2025
dc.identifier.citation
Andruchow, Esteban; Corach, Gustavo; Recht, Lázaro; Homogeneous spaces of operators; Springer Verlag Berlín; 2025; 121-167
dc.identifier.isbn
978-3-031-82318-3
dc.identifier.uri
http://hdl.handle.net/11336/273584
dc.description.abstract
Let A be a unital C^∗-algebra. In this chapter (and in the next one) we study the Poincaré half-space H of A H:={h ∈ A : Im(h) is positive and invertible}. In the case of theC^*-algebra B(L) of bounded linear operators on the Hilbert space L, the space H is isomorphic to the tangent bundle of the set of inner products on L. Also consider the following situation. Let E be a complex vector bundle over a compact space M provided with a Hermitian structure. Consider the C^*-algebra Γ(End(E)) of continuous sections of the endomorphism bundle of E. The Poincaré space of Γ(End(E)) consists of the elements of the form X+ ia, where a is a Hermitian structure on E and X is infinitesimal deformation of a. The space H is naturally isomorphic to the following spaces: 1. the Poincaré disk D of A: D:={z ∈ A}: ||z||<1}; 2. the space Qρ of A-module projections q acting in A × A which decompose the form θ = ρ ·, · induced by a fixed symmetry\rho ρ in A × A, in the following sense: θ is positive in R(q) and negative in N(q).
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer Verlag Berlín
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
PROJECTIONS
dc.subject
POSITIVE OPERATORS
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Homogeneous spaces of operators
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/bookPart
dc.type
info:ar-repo/semantics/parte de libro
dc.date.updated
2025-10-07T09:18:35Z
dc.journal.pagination
121-167
dc.journal.pais
Alemania
dc.journal.ciudad
Berlin
dc.description.fil
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
dc.description.fil
Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
dc.description.fil
Fil: Recht, Lázaro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/978-3-031-82319-0_3
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-3-031-82319-0_3
dc.conicet.paginas
294
dc.source.titulo
Geometry, topology and operator algebras?global analysis, invariants and their significance in theoretical physics
Archivos asociados