Mostrar el registro sencillo del ítem
dc.contributor.author
Bollati, Julieta
dc.contributor.author
Natale, María Fernanda
dc.contributor.author
Semitiel, José Abel
dc.contributor.author
Tarzia, Domingo Alberto
dc.date.available
2025-10-16T10:04:59Z
dc.date.issued
2025-06
dc.identifier.citation
Bollati, Julieta; Natale, María Fernanda; Semitiel, José Abel; Tarzia, Domingo Alberto; Relationship among solutions for three-phase change problems with Robin, Dirichlet and Neumann boundary conditions; Pergamon-Elsevier Science Ltd; International Communications In Heat And Mass Transfer; 165; 6-2025; 1-13
dc.identifier.issn
0735-1933
dc.identifier.uri
http://hdl.handle.net/11336/273547
dc.description.abstract
This study presents a novel approach to the melting process in a three-phase Stefan problem, applied to a semi-infinite material with a convective boundary condition at the fixed face. By using a similarity-type transformation, the problem is simplified and solved explicitly, yielding a unique solution. Additionally, a computational example is provided to illustrate the temperature distribution and the evolution of the free boundaries in a melting semi-infinite material with an intermediate zone. The principal key contribution lies in revealing new equivalences among solutions to three distinct three-phase Stefan problems, each with different boundary conditions (Robin, Dirichlet and Neumann). These equivalences are established under specific data relationships, providing fresh insights into phase change behavior across varying boundary conditions. This research significantly advances the understanding of multi-phase heat transfer problems.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Pergamon-Elsevier Science Ltd
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
THREE-PHASE STEFAN PROBLEM
dc.subject
FREE BOUNDARY PROBLEM
dc.subject
CONVECTIVE BOUNDARY CONDITION
dc.subject
SIMILARITY-TYPE SOLUTION
dc.subject
EXPLICIT SOLUTION
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Relationship among solutions for three-phase change problems with Robin, Dirichlet and Neumann boundary conditions
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-10-15T15:39:17Z
dc.journal.volume
165
dc.journal.pagination
1-13
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Bollati, Julieta. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina
dc.description.fil
Fil: Natale, María Fernanda. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina
dc.description.fil
Fil: Semitiel, José Abel. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina
dc.description.fil
Fil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina
dc.journal.title
International Communications In Heat And Mass Transfer
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0735193325003926
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.icheatmasstransfer.2025.108966
Archivos asociados