Mostrar el registro sencillo del ítem

dc.contributor.author
Bollati, Julieta  
dc.contributor.author
Natale, María Fernanda  
dc.contributor.author
Semitiel, José Abel  
dc.contributor.author
Tarzia, Domingo Alberto  
dc.date.available
2025-10-16T10:04:59Z  
dc.date.issued
2025-06  
dc.identifier.citation
Bollati, Julieta; Natale, María Fernanda; Semitiel, José Abel; Tarzia, Domingo Alberto; Relationship among solutions for three-phase change problems with Robin, Dirichlet and Neumann boundary conditions; Pergamon-Elsevier Science Ltd; International Communications In Heat And Mass Transfer; 165; 6-2025; 1-13  
dc.identifier.issn
0735-1933  
dc.identifier.uri
http://hdl.handle.net/11336/273547  
dc.description.abstract
This study presents a novel approach to the melting process in a three-phase Stefan problem, applied to a semi-infinite material with a convective boundary condition at the fixed face. By using a similarity-type transformation, the problem is simplified and solved explicitly, yielding a unique solution. Additionally, a computational example is provided to illustrate the temperature distribution and the evolution of the free boundaries in a melting semi-infinite material with an intermediate zone. The principal key contribution lies in revealing new equivalences among solutions to three distinct three-phase Stefan problems, each with different boundary conditions (Robin, Dirichlet and Neumann). These equivalences are established under specific data relationships, providing fresh insights into phase change behavior across varying boundary conditions. This research significantly advances the understanding of multi-phase heat transfer problems.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
THREE-PHASE STEFAN PROBLEM  
dc.subject
FREE BOUNDARY PROBLEM  
dc.subject
CONVECTIVE BOUNDARY CONDITION  
dc.subject
SIMILARITY-TYPE SOLUTION  
dc.subject
EXPLICIT SOLUTION  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Relationship among solutions for three-phase change problems with Robin, Dirichlet and Neumann boundary conditions  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-10-15T15:39:17Z  
dc.journal.volume
165  
dc.journal.pagination
1-13  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Bollati, Julieta. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina  
dc.description.fil
Fil: Natale, María Fernanda. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina  
dc.description.fil
Fil: Semitiel, José Abel. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina  
dc.description.fil
Fil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina  
dc.journal.title
International Communications In Heat And Mass Transfer  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0735193325003926  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.icheatmasstransfer.2025.108966