Mostrar el registro sencillo del ítem

dc.contributor.author
Demarchi, María Cecilia  
dc.contributor.author
Gervaz Canessa, Sofía  
dc.contributor.author
Pena-Vergara, Gabriel  
dc.contributor.author
Albanesi, Alejandro Eduardo  
dc.contributor.author
Favre, Federico  
dc.date.available
2025-10-15T14:10:21Z  
dc.date.issued
2025-03  
dc.identifier.citation
Demarchi, María Cecilia; Gervaz Canessa, Sofía; Pena-Vergara, Gabriel; Albanesi, Alejandro Eduardo; Favre, Federico; Enhancing the Accuracy of Thermal Model Calibration: Integrating Zone Air and Surface Temperatures, Convection Coefficients, and Solar and Thermal Absorptivity; Elsevier Science SA; Energy and Buildings; 336; 3-2025; 1-10  
dc.identifier.issn
0378-7788  
dc.identifier.uri
http://hdl.handle.net/11336/273536  
dc.description.abstract
Building energy simulation models are indispensable tools for predicting thermal and energy performance and evaluating building energy efficiency. However, in the calibration and sensitivity analysis of these models, most studies focus on air temperatures or energy consumption, typically not taking into account critical parameters such as surface temperatures, convective heat transfer coefficients, and thermal and solar absorptivities. In this context, this work complements prior studies by incorporating these critical parameters, including convection coefficients and thermal and solar absorptivity, enhancing both the reliability and completeness of building simulation models. Using a monitoring period, air and surface temperature data were collected under free-floating conditions and supplemented with meteorological records from an on-site station. Optimization was performed using the root mean square error (RMSE) metric to minimize discrepancies between measured and simulated values of zone air and surface temperatures. The results demonstrate that the detailed calibration strategy, which considers convective coefficients and material absorptivities as design variables and minimizes errors in both air and surface temperature predictions, significantly enhances model accuracy. This approach reduces the RMSE of air temperature predictions by 60% and the RMSE of surface temperature predictions by 73% (walls), 79% (inner roof), 42% (outer roof), and 82% (floor). Further analysis of heat gains and losses emphasizes the critical role of these parameters in the accuracy in the modeling of building-environment interactions. This detailed and robust approach ensures a more precise and reliable simulation model, highlighting the critical role of advanced calibration techniques in optimizing building energy performance simulations.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science SA  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Thermal model calibration  
dc.subject
Convective coefficients  
dc.subject
Solar absorptivity  
dc.subject
Thermal absorptivity  
dc.subject
EnergyPlus  
dc.subject
Genetic algorithms  
dc.subject.classification
Otras Ingeniería Civil  
dc.subject.classification
Ingeniería Civil  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.subject.classification
Mecánica Aplicada  
dc.subject.classification
Ingeniería Mecánica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Enhancing the Accuracy of Thermal Model Calibration: Integrating Zone Air and Surface Temperatures, Convection Coefficients, and Solar and Thermal Absorptivity  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-10-14T12:59:02Z  
dc.journal.volume
336  
dc.journal.pagination
1-10  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Demarchi, María Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina  
dc.description.fil
Fil: Gervaz Canessa, Sofía. Universidad de la República; Uruguay  
dc.description.fil
Fil: Pena-Vergara, Gabriel. Universidad de la República; Uruguay  
dc.description.fil
Fil: Albanesi, Alejandro Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina  
dc.description.fil
Fil: Favre, Federico. Universidad de la República; Uruguay  
dc.journal.title
Energy and Buildings  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0378778825003470  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.enbuild.2025.115617