Mostrar el registro sencillo del ítem
dc.contributor.author
Demarchi, María Cecilia
dc.contributor.author
Gervaz Canessa, Sofía
dc.contributor.author
Pena-Vergara, Gabriel
dc.contributor.author
Albanesi, Alejandro Eduardo
dc.contributor.author
Favre, Federico
dc.date.available
2025-10-15T14:10:21Z
dc.date.issued
2025-03
dc.identifier.citation
Demarchi, María Cecilia; Gervaz Canessa, Sofía; Pena-Vergara, Gabriel; Albanesi, Alejandro Eduardo; Favre, Federico; Enhancing the Accuracy of Thermal Model Calibration: Integrating Zone Air and Surface Temperatures, Convection Coefficients, and Solar and Thermal Absorptivity; Elsevier Science SA; Energy and Buildings; 336; 3-2025; 1-10
dc.identifier.issn
0378-7788
dc.identifier.uri
http://hdl.handle.net/11336/273536
dc.description.abstract
Building energy simulation models are indispensable tools for predicting thermal and energy performance and evaluating building energy efficiency. However, in the calibration and sensitivity analysis of these models, most studies focus on air temperatures or energy consumption, typically not taking into account critical parameters such as surface temperatures, convective heat transfer coefficients, and thermal and solar absorptivities. In this context, this work complements prior studies by incorporating these critical parameters, including convection coefficients and thermal and solar absorptivity, enhancing both the reliability and completeness of building simulation models. Using a monitoring period, air and surface temperature data were collected under free-floating conditions and supplemented with meteorological records from an on-site station. Optimization was performed using the root mean square error (RMSE) metric to minimize discrepancies between measured and simulated values of zone air and surface temperatures. The results demonstrate that the detailed calibration strategy, which considers convective coefficients and material absorptivities as design variables and minimizes errors in both air and surface temperature predictions, significantly enhances model accuracy. This approach reduces the RMSE of air temperature predictions by 60% and the RMSE of surface temperature predictions by 73% (walls), 79% (inner roof), 42% (outer roof), and 82% (floor). Further analysis of heat gains and losses emphasizes the critical role of these parameters in the accuracy in the modeling of building-environment interactions. This detailed and robust approach ensures a more precise and reliable simulation model, highlighting the critical role of advanced calibration techniques in optimizing building energy performance simulations.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science SA
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Thermal model calibration
dc.subject
Convective coefficients
dc.subject
Solar absorptivity
dc.subject
Thermal absorptivity
dc.subject
EnergyPlus
dc.subject
Genetic algorithms
dc.subject.classification
Otras Ingeniería Civil
dc.subject.classification
Ingeniería Civil
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.subject.classification
Mecánica Aplicada
dc.subject.classification
Ingeniería Mecánica
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Enhancing the Accuracy of Thermal Model Calibration: Integrating Zone Air and Surface Temperatures, Convection Coefficients, and Solar and Thermal Absorptivity
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-10-14T12:59:02Z
dc.journal.volume
336
dc.journal.pagination
1-10
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Demarchi, María Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
dc.description.fil
Fil: Gervaz Canessa, Sofía. Universidad de la República; Uruguay
dc.description.fil
Fil: Pena-Vergara, Gabriel. Universidad de la República; Uruguay
dc.description.fil
Fil: Albanesi, Alejandro Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
dc.description.fil
Fil: Favre, Federico. Universidad de la República; Uruguay
dc.journal.title
Energy and Buildings
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0378778825003470
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.enbuild.2025.115617
Archivos asociados