Mostrar el registro sencillo del ítem

dc.contributor.author
Li, Yunlong  
dc.contributor.author
Wang, Yunfei  
dc.contributor.author
Feng, Tangfeng  
dc.contributor.author
Moya, Javier Alberto  
dc.contributor.author
Qin, Faxiang  
dc.date.available
2025-10-14T13:50:11Z  
dc.date.issued
2025-10  
dc.identifier.citation
Li, Yunlong; Wang, Yunfei; Feng, Tangfeng; Moya, Javier Alberto; Qin, Faxiang; Bridging microscale magnetic domain dynamics and macroscopic electromagnetic response in magnetic fibers: A micromagnetic simulation study; Elsevier Science SA; Journal of Alloys and Compounds; 1041; 10-2025; 1-10  
dc.identifier.issn
0925-8388  
dc.identifier.uri
http://hdl.handle.net/11336/273435  
dc.description.abstract
Magnetic fibers are promising candidates for smart sensing and electromagnetic composites due to their tunable electromagnetic properties governed by unique magnetic domain structure under external stimuli. This study presents a multiscale computational framework developed using the Micromagnetic Simulation module in COMSOL Multiphysics to investigate the interplay between stress and magnetic response in Co-based magnetic fibers. By coupling micromagnetic simulation with time- and frequency-domain analysis, we reveal how tensile stress modulates the magnetic domain configurations and alters the electromagnetic response. The results demonstrate pronounced stress-magnetoelastic coupling, wherein tensile stress reduces axial magnetization while enhancing circumferential alignment, directly altering ferromagnetic resonance (FMR) characteristics. We further identify a stress-magnetostriction coupling coefficient that manipulates the FMR response to applied stress. Experimental validation through magnetization measurements, magneto-optical Kerr microscopy and impedance measurements supports the simulation predictions. This work provides fundamental insights into magneto-mechanical interactions in magnetic fibers and also provides a computational framework for designing stress-tunable materials optimized for high-frequency applications in sensors, electromagnetic composites, and multifunctional devices.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science SA  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
MAGNETIC FIBERS  
dc.subject
MICROMAGNETIC SIMULATION  
dc.subject
MAGNETIC DOMAIN  
dc.subject
FERROMAGNETIC RESONANCE  
dc.subject
STRESS-MAGNETOELASTIC COUPLING  
dc.subject.classification
Otras Ingeniería de los Materiales  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Bridging microscale magnetic domain dynamics and macroscopic electromagnetic response in magnetic fibers: A micromagnetic simulation study  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-10-14T12:50:59Z  
dc.journal.volume
1041  
dc.journal.pagination
1-10  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Li, Yunlong. Institute For Composites Science Innovation; China  
dc.description.fil
Fil: Wang, Yunfei. Institute For Composites Science Innovation; China  
dc.description.fil
Fil: Feng, Tangfeng. Institute For Composites Science Innovation; China  
dc.description.fil
Fil: Moya, Javier Alberto. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Tecnologías y Ciencias de la Ingenieria "Hilario Fernandez Long". Grupo Vinculado al Intecin - Grupo Interdisciplinario en Materiales; Argentina. Universidad Católica de Salta; Argentina  
dc.description.fil
Fil: Qin, Faxiang. Institute For Composites Science Innovation; China  
dc.journal.title
Journal of Alloys and Compounds  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S092583882505371X  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jallcom.2025.183810