Artículo
Matrix characterisation of the hierarchy FiC n of bivaluated logics
Fecha de publicación:
06/2024
Editorial:
Taylor & Francis
Revista:
Journal Of Applied Non-classical Logics
ISSN:
1166-3081
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper, we define the family FiCn:={FiCn}n∈ω of logics bymeans of semantics of bivaluations. This family is a variant of the familyof paraconsistent bivaluated Ciun-logics, defined and studied byJ. Ciuciura. We will show that every logic in FiCn can be alternativelydefined by means of finite matrices. This result arises from the characterisationof the truth-values of the involved matrices (relative toeach FiCn-logic) as being specific finite sequences of elements of theset 2 := {0, 1}.Moreover,we will showin this paper that such characterisationis related to the well-known standard Fibonacci Sequence,which is presented here by means of its binary expansion.
Palabras clave:
Paraconsistents logics
,
Finite matrices
,
Fibonacci binary expansion
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - SAN JUAN)
Articulos de CENTRO CIENTIFICO TECNOLOGICO CONICET - SAN JUAN
Articulos de CENTRO CIENTIFICO TECNOLOGICO CONICET - SAN JUAN
Citación
Fernández, Víctor Leandro; Eisenberg, Gabriela; Matrix characterisation of the hierarchy FiC n of bivaluated logics; Taylor & Francis; Journal Of Applied Non-classical Logics; 35; 1; 6-2024; 46-67
Compartir
Altmétricas