Artículo
Tailoring Alginate Nanoparticles: Influence of Reverse Micelle Templates on Structure, Size, and Encapsulation Properties
Fecha de publicación:
03/2025
Editorial:
Royal Society of Chemistry
Revista:
RSC Advances
ISSN:
2046-2069
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this work, alginate nanoparticles (ALG-NPs) were synthesized using reverse micelles (RMs) as nanoreactors to investigate how interfacial charge influences their structure, size, and encapsulation properties. Three types of RMs were employed: (i) anionic RMs formed by sodium bis(2-ethylhexyl)sulfosuccinate (AOT) in isopropyl myristate, (ii) cationic RMs formed by benzyl-hexadecyl-dimethylammonium chloride (BHDC) in toluene, and (iii) nonionic RMs formed by 2-[4-(2,4,4-trimethylpentan-2-yl)phenoxy]ethanol (TX-100) in cyclohexane. ALG-NPs were synthesized at varying water contents (W0 = [H2O]/[surfactant]) and resuspended in water at pH 6.5 for characterization. Dynamic light scattering revealed that nanoparticle size is highly dependent on the RM template. ALG-NPs synthesized in AOT RMs were the smallest, with their size increasing as W0 increased, a trend also observed for TX-100 RMs. In contrast, the opposite behavior was observed in BHDC RMs, where nanoparticle size decreased with increasing W0. This difference reflects the degree of crosslinking with Ca2+ ions as influenced by interfacial charge. Using N,N-dimethyl-6- propionyl-2-naphthylamine (PRODAN) and curcumin, we found that AOT-based ALG-NPs were the most compact and rigid, offering prolonged protection for curcumin against degradation under ambient conditions. This study underscores the potential of tailoring ALG-NPs through precise control of interfacial environments, offering new opportunities for applications in food technology, nutraceuticals, and biotechnology. By stabilizing bioactive compounds and enhancing bioavailability, these findings pave the way for innovative functional formulations.
Palabras clave:
ALGINATE
,
NANOPARTICLES
,
REVERSE MICELLES
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos (IDAS)
Articulos de INSTITUTO PARA EL DESARROLLO AGROINDUSTRIAL Y DE LA SALUD
Articulos de INSTITUTO PARA EL DESARROLLO AGROINDUSTRIAL Y DE LA SALUD
Citación
Duque Lizarazo, Fanny Melina; Falcone, Ruben Dario; Correa, Nestor Mariano; Tailoring Alginate Nanoparticles: Influence of Reverse Micelle Templates on Structure, Size, and Encapsulation Properties; Royal Society of Chemistry; RSC Advances; 15; 10; 3-2025; 7926-7937
Compartir
Altmétricas