Mostrar el registro sencillo del ítem

dc.contributor.author
Feroldi, Diego Hernán  
dc.contributor.author
Zumoffen, David Alejandro Ramon  
dc.contributor.author
Basualdo, Marta Susana  
dc.contributor.other
Basualdo, Marta Susana  
dc.contributor.other
Feroldi, Diego Hernán  
dc.contributor.other
Outbib, Rachid  
dc.date.available
2025-10-07T09:54:45Z  
dc.date.issued
2012  
dc.identifier.citation
Feroldi, Diego Hernán; Zumoffen, David Alejandro Ramon; Basualdo, Marta Susana; Advanced Control Strategies for the Oxygen in the Cathode; Springer London Ltd; 2012; 73-116  
dc.identifier.isbn
978-1-84996-184-4  
dc.identifier.uri
http://hdl.handle.net/11336/272911  
dc.description.abstract
This chapter presents two advanced control strategies based on model predictive control to control the oxygen level in the cathode of a PEM fuel cell system. The objectives are to achieve a better efficiency and to maintain the necessary level of the oxygen in the cathode to prevent short circuit and membrane damage. First, a methodology of control based on Dynamic Matrix Control is proposed. This strategy includes a stationary and dynamic study of the advantages of using a regulating valve for the cathode outlet flow in combination with the compressor motor voltage as manipulated variables in a PEMfuel cell system. The influence of this input variable is exploited by implementing a predictive control strategy based on dynamic matrix control (DMC), using these manipulated variables. The objectives of this control strategy are to regulate both the fuel cell voltage and oxygen excess Ratio in the cathode. Second, a methodology of control based on adaptive predictive control with robust filter (APCWRF) is proposed. The APCWRF is designed for controlling the compressor motor voltage. Because of the wide working range the algorithm isimproved with three different zones supported by three nominal linear models.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer London Ltd  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
FUEL CELLS  
dc.subject
ADAPTIVE PREDICTIVE CONTROL  
dc.subject
DC MOTORS  
dc.subject
ADVANCED CONTROL  
dc.subject.classification
Sistemas de Automatización y Control  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Advanced Control Strategies for the Oxygen in the Cathode  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/bookPart  
dc.type
info:ar-repo/semantics/parte de libro  
dc.date.updated
2025-09-17T09:20:49Z  
dc.journal.pagination
73-116  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Feroldi, Diego Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina  
dc.description.fil
Fil: Zumoffen, David Alejandro Ramon. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina  
dc.description.fil
Fil: Basualdo, Marta Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-1-84996-184-4_3  
dc.conicet.paginas
460  
dc.source.titulo
PEM Fuel Cells with Bio-Ethanol Processor Systems: A Multidisciplinary Study of Modelling, Simulation, Fault Diagnosis and Advanced Control