Artículo
Hyperbolic Diffusion Functionals on a Ring with Finite Velocity
Fecha de publicación:
01/2025
Editorial:
Molecular Diversity Preservation International
Revista:
Entropy
ISSN:
1099-4300
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
I study a lattice with periodic boundary conditions using a non-local master equation that evolves over time. I investigate different system regimes using classical theories like Fisher information, Shannon entropy, complexity, and the Cramér–Rao bound.To simulate spatial continuity, I employ a large number of sites in the ring and compare the results with continuous spatial systems like the Telegrapher’s equations. The Fisher information revealed a power-law decay of t(−ν) , with ν = 2 for short times and ν = 1 for long times, across all jump models. Similar power-law trends were also observed for complexity and the Fisher information related to Shannon entropy over time. Furthermore, I analyze toy models with only two ring sites to understand the behavior of the Fisher information and Shannon entropy. As expected, a ring with a small number of sites quickly converges to a uniform distribution for long times. I also examine the Shannon entropy for short and long times.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - PATAGONIA CONFLUENCIA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA CONFLUENCIA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA CONFLUENCIA
Citación
Nizama Mendoza, Marco Alfredo; Hyperbolic Diffusion Functionals on a Ring with Finite Velocity; Molecular Diversity Preservation International; Entropy; 27; 2; 1-2025; 1-13
Compartir
Altmétricas