Artículo
Unveiling cancer stem cell marker networks: A hypergraph approach
Fecha de publicación:
09/2025
Editorial:
Elsevier
Revista:
Computational Biology And Chemistry
ISSN:
1476-9271
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We propose a novel computational framework leveraging hypergraph theory to analyse cancer stem cell markers (CSCMs) across multiple organs. Hypergraphs provide a robust representation of CSCM co-expression patterns, capturing their complex multi-organ relationships more comprehensively than traditional graph-based methods. By integrating mutual information analysis and Markov models, we identify key markers driving tumour heterogeneity and metastasis, offering detailed insights into their interdependencies. This approach establishes hypergraphs as a computationally powerful tool to model cancer progression and metastatic dynamics, contributing to the understanding of complex biological systems and supporting the development of targeted therapeutic strategies.
Palabras clave:
HYPERGRAPHS
,
BIOLOGICAL MODELLING
,
CANCER STEM CELL MARKERS
,
MARKOV CHAINS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Margarit, David Hipólito; Paccosi, Gustavo; Reale, Marcela Verónica; Romanelli, Lilia Mabel; Unveiling cancer stem cell marker networks: A hypergraph approach; Elsevier; Computational Biology And Chemistry; 120; 9-2025; 1-14
Compartir
Altmétricas