Mostrar el registro sencillo del ítem

dc.contributor.author
Schaber, Jörg  
dc.contributor.author
Baltanas, Rodrigo  
dc.contributor.author
Bush, Alan  
dc.contributor.author
Klipp, Edda  
dc.contributor.author
Colman Lerner, Alejandro Ariel  
dc.date.available
2025-10-03T10:21:21Z  
dc.date.issued
2012-11  
dc.identifier.citation
Schaber, Jörg; Baltanas, Rodrigo; Bush, Alan; Klipp, Edda; Colman Lerner, Alejandro Ariel; Modelling reveals novel roles of two parallel signalling pathways and homeostatic feedbacks in yeast; Nature Publishing Group; Molecular Systems Biology; 8; 1; 11-2012; 1-17  
dc.identifier.issn
1744-4292  
dc.identifier.uri
http://hdl.handle.net/11336/272667  
dc.description.abstract
The high osmolarity glycerol (HOG) pathway in yeast serves as a prototype signalling system foreukaryotes. We used an unprecedented amount of data to parameterise 192 models capturingdifferent hypotheses about molecular mechanisms underlying osmo-adaptation and selected a bestapproximating model. This model implied novel mechanisms regulating osmo-adaptation in yeast.The model suggested that (i) the main mechanism for osmo-adaptation is a fast and transient nontranscriptionalHog1-mediated activation of glycerol production, (ii) the transcriptional responseserves to maintain an increased steady-state glycerol production with lowsteady-state Hog1 activity,and (iii) fast negative feedbacks of activated Hog1 on upstream signalling branches serves tostabilise adaptation response. The best approximating model also indicated that homoeostaticadaptive systems with two parallel redundant signalling branches show a more robust and fasterresponse than single-branch systems. We corroborated this notion to a large extent by dedicatedmeasurements of volume recovery in single cells. Our study also demonstrates that systematicallytesting a model ensemble against data has the potential to achieve a better and unbiasedunderstanding of molecular mechanisms.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Nature Publishing Group  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
signal transduction  
dc.subject
mathematical modeling  
dc.subject
stress response  
dc.subject
yeast  
dc.subject.classification
Bioquímica y Biología Molecular  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Modelling reveals novel roles of two parallel signalling pathways and homeostatic feedbacks in yeast  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-10-02T11:28:12Z  
dc.journal.volume
8  
dc.journal.number
1  
dc.journal.pagination
1-17  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Schaber, Jörg. Institute For Experimental Internal Medicine; Alemania  
dc.description.fil
Fil: Baltanas, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina  
dc.description.fil
Fil: Bush, Alan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina  
dc.description.fil
Fil: Klipp, Edda. Humboldt-Universität zu Berlin; Alemania  
dc.description.fil
Fil: Colman Lerner, Alejandro Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina  
dc.journal.title
Molecular Systems Biology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://msb.embopress.org/content/8/1/622.abstract  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1038/msb.2012.53