Artículo
Microstructural characterization of EUROFER 97 during low-cycle fatigue
Fecha de publicación:
05/2012
Editorial:
Elsevier Science
Revista:
Journal of Nuclear Materials
ISSN:
0022-3115
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The quenched and tempered reduced-activation ferritic/martensitic steel EUROFER 97 is one of the candidates for structural components of Generation IV nuclear power plants. The cyclic behaviour of this steel during isothermal plastic strain-controlled tests was investigated at room temperature and at 550 C. Under low-cycle fatigue test this steel shows, after the first few cycles, a pronounced cyclic softening accompanied by microstructural changes such as the decrease of the free dislocation density inside the subgrain. The rate of softening increases with temperature being very pronounced at temperatures above 500 C. The evolution of the flow stress during cycling was studied by analyzing the so-called ‘‘back’’ and ‘‘friction’’ stresses obtained from the hysteresis loops measured along the entire test. From the analysis of the hysteresis loops and corroborated by electron microscopy observations, it can be concluded that the strong cyclic softening observed is produced by the decrease exhibited by the friction stress. The Taylor coefficient was calculated measuring the evolution of the free dislocation density.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - PATAGONIA NORTE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Articulos(IFIR)
Articulos de INST.DE FISICA DE ROSARIO (I)
Articulos de INST.DE FISICA DE ROSARIO (I)
Citación
Giordana, María Florencia; Alvarez, Iris; Armas, Alberto Franklin; Microstructural characterization of EUROFER 97 during low-cycle fatigue; Elsevier Science; Journal of Nuclear Materials; 424; 1-3; 5-2012; 247-251
Compartir
Altmétricas