Artículo
Consistent nonparametric regression for functional data under Stone-Besicovitch conditions
Fecha de publicación:
11/2012
Editorial:
Institute of Electrical and Electronics Engineers
Revista:
Ieee Transactions On Information Theory
ISSN:
0018-9448
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper, we address the problem of nonparametric regression estimation in the infinite-dimensional setting. We start by extending the Stone's seminal result to the case of metric spaces when the probability measure of the explanatory variables is tight. Then, under slight variations on the hypotheses, we state and prove the theorem for general metric measure spaces. From this result, we derive the mean square consistency of the k-NN and kernel estimators if the regression function is bounded and the Besicovitch condition holds. We also prove that, for the uniform kernel estimate, the Besicovitch condition is also necessary in order to attain L1 consistency for almost every x.
Palabras clave:
Functional data
,
Nonparametric regression
,
Metric spaces
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Forzani, Liliana Maria; Fraiman, Jacob Ricardo; Llop Orzan, Pamela Nerina; Consistent nonparametric regression for functional data under Stone-Besicovitch conditions; Institute of Electrical and Electronics Engineers; Ieee Transactions On Information Theory; 58; 11; 11-2012; 6697-6708
Compartir
Altmétricas