Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Assessing soil quality, the role of indigenous knowledge and biological indicators in novelle soil quality research

Fasano, María CeciliaIcon ; Bich, Gustavo AngelIcon ; Castrillo, María LorenaIcon ; Zapata, Pedro DarioIcon
Fecha de publicación: 06/2025
Editorial: Elsevier
Revista: Environmental and Sustainability Indicators
ISSN: 2665-9727
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Agrícolas

Resumen

This bibliographic study examines soil quality assessment indicators in scientific publications using bibliometrics and meta-analysis with a context-specific methodological focus, offering scalable insights for future global valuation. A systematic literature review of 118 scientific publications on soil quality assessment from the pandemic period in Argentina identified regionally sensitive soil quality indicators. MCA revealed relationships among indicators categories in a two-dimensional space. Crop factors beyond yields, integrated physicochemical-biological statistical analysis, ecoregions, and Indigenous knowledge indicators explained more than 30 % of the total dataset variance, shaping it with contextual tendencies. These time- and site-specific soil quality indicators, identified through categorical variable associations via MCA lower-dimensional clustering, and corroborated by k-means robustness, highlight period- and region-specific trends. Notably, they emphasize the significant contributions of female researchers from diverse ecoregions in scientific publications. Upon transferable, context-sensitive, and defined frameworks, this interdisciplinary work addresses multiple United Nations Sustainable Development Goals. Forthcoming machine learning applications could swiftly expand soil quality assessments across broader spatial and temporal scales, enabling worldwide scalability.
Palabras clave: SOIL , SUSTAINABILITY , ARGENTINA
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.311Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/272406
URL: https://linkinghub.elsevier.com/retrieve/pii/S266597272500128X
DOI: http://dx.doi.org/10.1016/j.indic.2025.100707
Colecciones
Articulos(CCT - NORDESTE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - NORDESTE
Citación
Fasano, María Cecilia; Bich, Gustavo Angel; Castrillo, María Lorena; Zapata, Pedro Dario; Assessing soil quality, the role of indigenous knowledge and biological indicators in novelle soil quality research; Elsevier; Environmental and Sustainability Indicators; 26; 6-2025; 1-15
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES