Mostrar el registro sencillo del ítem
dc.contributor.author
Pedrozo, Hector Alejandro
dc.contributor.author
Valderrama Ríos, C.M.
dc.contributor.author
Zamarripa, M.A.
dc.contributor.author
Morgan, J.
dc.contributor.author
Osorio Suárez, J.P.
dc.contributor.author
Uribe Rodríguez, A.
dc.contributor.author
Díaz, María Soledad
dc.contributor.author
Biegler, L.T.
dc.date.available
2025-09-30T11:27:45Z
dc.date.issued
2024-07
dc.identifier.citation
Pedrozo, Hector Alejandro; Valderrama Ríos, C.M.; Zamarripa, M.A.; Morgan, J.; Osorio Suárez, J.P.; et al.; Optimization of CO2 capture plants with surrogate model uncertainties; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 186; 7-2024; 1-18
dc.identifier.issn
0098-1354
dc.identifier.uri
http://hdl.handle.net/11336/272260
dc.description.abstract
CO2 capture plants can help reduce the cost of deploying capture systems across the globe. However, the CO2 variability and model uncertainty represent operational challenges to capture CO2 from different sources. This work proposes a framework for analyzing the optimal plant design considering different flue gas sources. We show a methodology to generate large data sets from optimization runs using rigorous models in Aspen Plus®.The efficiency of the approach allows its application to large-scale optimization problems, with an average CPU time per run of 176 s.We additionally build surrogate models (SMs) for the capital and operating costs of the capture plants, employing an iterative procedure to generate SMs using ALAMO. We systematically reject SMs with high uncertainty in the estimated parameters. This approach results in SMs with favorable bias-variance tradeoffs, enabling their effective application to optimization problems under uncertainty, as demonstrated with a pooling problem of CO2 streams.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Pergamon-Elsevier Science Ltd
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Optimal design
dc.subject
Surrogate models
dc.subject
MEA-based absorption
dc.subject
Equation-oriented model
dc.subject.classification
Ingeniería de Procesos Químicos
dc.subject.classification
Ingeniería Química
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Optimization of CO2 capture plants with surrogate model uncertainties
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-09-29T13:05:40Z
dc.journal.volume
186
dc.journal.pagination
1-18
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Pedrozo, Hector Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
dc.description.fil
Fil: Valderrama Ríos, C.M.. No especifíca;
dc.description.fil
Fil: Zamarripa, M.A.. No especifíca;
dc.description.fil
Fil: Morgan, J.. No especifíca;
dc.description.fil
Fil: Osorio Suárez, J.P.. Centre for Innovation and Technology Colombian Petroleum Institute; Colombia
dc.description.fil
Fil: Uribe Rodríguez, A.. Centre for Innovation and Technology Colombian Petroleum Institute; Colombia
dc.description.fil
Fil: Díaz, María Soledad. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
dc.description.fil
Fil: Biegler, L.T.. University of Carnegie Mellon. Department of Chemical Engineering; Estados Unidos
dc.journal.title
Computers and Chemical Engineering
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0098135424001273
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.compchemeng.2024.108709
Archivos asociados