Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Combined data mining strategy for the systematic identification of sport drug metabolites in urine by liquid chromatography time-of-flight mass spectrometry

Domínguez Romero, Juan C.Icon ; García Reyes, Juan F.Icon ; Martínez Romero, RubénIcon ; Berton, PaulaIcon ; Martínez Lara, EstherIcon ; Del Moral Leal, María L.Icon ; Molina Díaz, AntonioIcon
Fecha de publicación: 25/01/2013
Editorial: Elsevier Science
Revista: Analytica Chimica Acta
ISSN: 0003-2670
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Química Analítica

Resumen

The development of comprehensive methods able to tackle with the systematic identification of drug metabolites in an automated fashion is of great interest. In this article, a strategy based on the combined use of two complementary data mining tools is proposed for the screening and systematic detection and identification of urinary drug metabolites by liquid chromatography full-scan high resolution mass spectrometry. The proposed methodology is based on the use of accurate mass extraction of diagnostic ions (compound-dependent information) from in-source CID fragmentation without precursor ion isolation along with the use of automated mass extraction of accurate-mass shifts corresponding to typical biotransformations (non compound-dependent information) that xenobiotics usually undergo when metabolized. The combined strategy was evaluated using LC-TOFMS with a suite of nine sport drugs representative from different classes (propranolol, bumetanide, clenbuterol, ephedrine, finasteride, methoxyphenamine, methylephedrine, salbutamol and terbutaline), after single doses administered to rats. The metabolite identification coverage rate obtained with the systematic method (compared to existing literature) was satisfactory, and provided the identification of several non-previously reported metabolites. In addition, the combined information obtained helps to minimize the number of false positives. As an example, the systematic identification of urinary metabolites of propranolol enabled the identification of up to 24 metabolites, 15 of them non previously described in literature, which is a valuable indicator of the usefulness of the proposed systematic procedure.
Palabras clave: Liquid Chromatography , High Resolution Mass Spectrometry , Drug Metabolites , Sport Drug Testing , Propranolol
Ver el registro completo
 
Archivos asociados
 
Tamaño: 677.7Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/2722
DOI: http://dx.doi.org/10.1016/j.aca.2012.11.049
URL: http://www.sciencedirect.com/science/article/pii/S0003267012017266
Colecciones
Articulos(IANIGLA)
Articulos de INST. ARG. DE NIVOLOGIA, GLACIOLOGIA Y CS. AMBIENT
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Domínguez Romero, Juan C.; García Reyes, Juan F.; Martínez Romero, Rubén; Berton, Paula; Martínez Lara, Esther; et al.; Combined data mining strategy for the systematic identification of sport drug metabolites in urine by liquid chromatography time-of-flight mass spectrometry; Elsevier Science; Analytica Chimica Acta; 761; 25-1-2013; 1-10
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES