Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Capítulo de Libro

Docking and Bias Docking

Título del libro: Structure-based drug design

Prieto, Juan Manuel; Schottlender, Gustavo; Clemente, Camila MaraIcon ; Betanzos San Juan, RafaelIcon ; Fernández Do Porto, Darío AugustoIcon ; Marti, Marcelo AdrianIcon
Fecha de publicación: 2025
Editorial: Springer
ISBN: 9783031691614
Idioma: Inglés
Clasificación temática:
Otras Ciencias Químicas

Resumen

This study conducts a comprehensive investigation into the field of protein-ligand docking within the context of drug discovery, with a pronounced emphasis on elucidating the complexities inherent in ligand-protein binding. This intricate interplay holds pivotal influence over essential biochemical processes and shapes the broader landscape of drug development. The primary focus of our inquiry is directed toward molecular docking methods, particularly those situated in the domain of in silico strategies. These computational methodologies function as predictive instruments, delineating the intricate structures of protein-ligand complexes with the specific aim of rational drug design. Despite their widespread implementation, challenges endure, notably in the precise estimation of ligand binding free energy and conformational flexibility.Our exploration unfolds with a detailed discourse on the historical evolution, fundamental objectives, and intricate components constituting docking programs. We delve into contemporary strategies and persistent challenges within this dynamically evolving field. The practical facets of docking assume a central role in our investigation, encompassing diverse realms such as pose prediction, virtual screening, conformational search algorithms, and the intricate domain of scoring functions. The bias docking method emerges as a pivotal strategy, augmenting accuracy through the assimilation of prior knowledge pertaining to ligand-receptor interactions.Throughout our narrative, we underscore the critical significance of meticulous analysis and validation in the assessment of docking results. Innovative techniques, including solvent site biased docking, find a notable place in our exploration, imparting a refined perspective. A list of popular docking software enhances the pragmatic utility of our work. Our gaze extends toward the horizon of future developments in docking methods, encapsulating progress in algorithmic precision, the integration of experimental data, and the application of machine learning and artificial intelligence. In conclusion, this dissertation highlights the promising trajectory of docking methods within the areas of drug discovery and molecular design.
Palabras clave: Biomedicine , Theoretical and Computational Chemistry , Pharmaceutical Sciences , Bias Docking
Ver el registro completo
 
Archivos asociados
Tamaño: 1.350Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/272151
URL: https://link.springer.com/chapter/10.1007/978-3-031-69162-1_5
DOI: http://dx.doi.org/10.1007/978-3-031-69162-1_5
Colecciones
Capítulos de libros (IC)
Capítulos de libros de INSTITUTO DE CALCULO
Capítulos de libros(IQUIBICEN)
Capítulos de libros de INSTITUTO DE QUIMICA BIOLOGICA DE LA FACULTAD DE CS. EXACTAS Y NATURALES
Citación
Prieto, Juan Manuel; Schottlender, Gustavo; Clemente, Camila Mara; Betanzos San Juan, Rafael; Fernández Do Porto, Darío Augusto; et al.; Docking and Bias Docking; Springer; 2025; 127-147
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES