Mostrar el registro sencillo del ítem

dc.contributor.author
Alaggia, Francisco Guillermo  
dc.contributor.author
Innangi, Michele  
dc.contributor.author
Cavallero, Laura  
dc.contributor.author
López, Dardo Rubén  
dc.contributor.author
Pontieri, Federica  
dc.contributor.author
Marzialetti, Flavio  
dc.contributor.author
Riera Tatché, Ramon  
dc.contributor.author
Gamba, Paolo  
dc.contributor.author
Carranza, Maria Laura  
dc.date.available
2025-09-26T13:39:15Z  
dc.date.issued
2025-03  
dc.identifier.citation
Alaggia, Francisco Guillermo; Innangi, Michele; Cavallero, Laura; López, Dardo Rubén; Pontieri, Federica; et al.; Multi-Temporal Remote Sensing for Forest Conservation and Management: A Case Study of the Gran Chaco in Central Argentina; Multidisciplinary Digital Publishing Institute; Remote Sensing; 17; 5; 3-2025; 1-26  
dc.identifier.issn
2072-4292  
dc.identifier.uri
http://hdl.handle.net/11336/272038  
dc.description.abstract
Anthropogenic alteration of tropical and subtropical forests is a major driver of biodi-versity loss, with the Chaco forest, the largest dry forest in the Americas, among the most impacted regions. Sustainable forest management, a key objective of the UN´s 15th Sustainable Development Goal (SDG), underscores the need for advanced moni-toring tools. This study integrates Sentinel-2 remote sensing (RS) spectral indices with field data to analyze forests under varying management regimes and levels of altera-tion in a representative area of the Chaco region (Chancaní Provincial Reserve and surrounding areas of the West Arid Chaco). Forest structure types and conservation levels were linked to monthly spectral index behavior using Linear Mixed Models and Random Forest analysis. Spectral indices such as BI (Brightness Index), NDWI (Normalized Difference Water Index), and MCARI (Modified Chlorophyll Absorption in Reflectance Index) effectively differentiated forest stands by conservation status and structural alteration. This combined RS and field data approach proved highly effective for detecting and characterizing forests with diverse conservation and sustainability conditions. The methodology demonstrates significant potential as a reliable RS-based tool for monitoring forest health and supporting progress toward SDG targets, particularly in regions like the Chaco forest, which faces extensive anthropogenic pressures.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Multidisciplinary Digital Publishing Institute  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
ECOSYSTEM MONITORING  
dc.subject
STRUCTURAL ALTERATION INDEX  
dc.subject
INDEXES PHENOLOGY  
dc.subject
RANDOM FOREST  
dc.subject.classification
Otras Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Multi-Temporal Remote Sensing for Forest Conservation and Management: A Case Study of the Gran Chaco in Central Argentina  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-09-25T11:27:48Z  
dc.journal.volume
17  
dc.journal.number
5  
dc.journal.pagination
1-26  
dc.journal.pais
Suiza  
dc.journal.ciudad
Basilea  
dc.description.fil
Fil: Alaggia, Francisco Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Córdoba. Estación Experimental Agropecuaria Manfredi. Estación Forestal Villa Dolores; Argentina  
dc.description.fil
Fil: Innangi, Michele. Università degli Studi del Molise; Italia  
dc.description.fil
Fil: Cavallero, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Córdoba. Estación Experimental Agropecuaria Manfredi. Estación Forestal Villa Dolores; Argentina  
dc.description.fil
Fil: López, Dardo Rubén. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Córdoba. Estación Experimental Agropecuaria Manfredi. Estación Forestal Villa Dolores; Argentina  
dc.description.fil
Fil: Pontieri, Federica. Università degli Studi del Molise; Italia  
dc.description.fil
Fil: Marzialetti, Flavio. National Biodiversity Future Center; Italia. University of Sassari; Italia  
dc.description.fil
Fil: Riera Tatché, Ramon. Università degli Studi del Molise; Italia. Universita degli Studi di Pavia; Italia  
dc.description.fil
Fil: Gamba, Paolo. Universita degli Studi di Pavia; Italia  
dc.description.fil
Fil: Carranza, Maria Laura. Università degli Studi del Molise; Italia. Universita Degli Studi Di Pavia; Italia  
dc.journal.title
Remote Sensing  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2072-4292/17/5/748  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.3390/rs17050748