Mostrar el registro sencillo del ítem
dc.contributor.author
Alaggia, Francisco Guillermo
dc.contributor.author
Innangi, Michele
dc.contributor.author
Cavallero, Laura
dc.contributor.author
López, Dardo Rubén
dc.contributor.author
Pontieri, Federica
dc.contributor.author
Marzialetti, Flavio
dc.contributor.author
Riera Tatché, Ramon
dc.contributor.author
Gamba, Paolo
dc.contributor.author
Carranza, Maria Laura
dc.date.available
2025-09-26T13:39:15Z
dc.date.issued
2025-03
dc.identifier.citation
Alaggia, Francisco Guillermo; Innangi, Michele; Cavallero, Laura; López, Dardo Rubén; Pontieri, Federica; et al.; Multi-Temporal Remote Sensing for Forest Conservation and Management: A Case Study of the Gran Chaco in Central Argentina; Multidisciplinary Digital Publishing Institute; Remote Sensing; 17; 5; 3-2025; 1-26
dc.identifier.issn
2072-4292
dc.identifier.uri
http://hdl.handle.net/11336/272038
dc.description.abstract
Anthropogenic alteration of tropical and subtropical forests is a major driver of biodi-versity loss, with the Chaco forest, the largest dry forest in the Americas, among the most impacted regions. Sustainable forest management, a key objective of the UN´s 15th Sustainable Development Goal (SDG), underscores the need for advanced moni-toring tools. This study integrates Sentinel-2 remote sensing (RS) spectral indices with field data to analyze forests under varying management regimes and levels of altera-tion in a representative area of the Chaco region (Chancaní Provincial Reserve and surrounding areas of the West Arid Chaco). Forest structure types and conservation levels were linked to monthly spectral index behavior using Linear Mixed Models and Random Forest analysis. Spectral indices such as BI (Brightness Index), NDWI (Normalized Difference Water Index), and MCARI (Modified Chlorophyll Absorption in Reflectance Index) effectively differentiated forest stands by conservation status and structural alteration. This combined RS and field data approach proved highly effective for detecting and characterizing forests with diverse conservation and sustainability conditions. The methodology demonstrates significant potential as a reliable RS-based tool for monitoring forest health and supporting progress toward SDG targets, particularly in regions like the Chaco forest, which faces extensive anthropogenic pressures.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Multidisciplinary Digital Publishing Institute
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
ECOSYSTEM MONITORING
dc.subject
STRUCTURAL ALTERATION INDEX
dc.subject
INDEXES PHENOLOGY
dc.subject
RANDOM FOREST
dc.subject.classification
Otras Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Multi-Temporal Remote Sensing for Forest Conservation and Management: A Case Study of the Gran Chaco in Central Argentina
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-09-25T11:27:48Z
dc.journal.volume
17
dc.journal.number
5
dc.journal.pagination
1-26
dc.journal.pais
Suiza
dc.journal.ciudad
Basilea
dc.description.fil
Fil: Alaggia, Francisco Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Córdoba. Estación Experimental Agropecuaria Manfredi. Estación Forestal Villa Dolores; Argentina
dc.description.fil
Fil: Innangi, Michele. Università degli Studi del Molise; Italia
dc.description.fil
Fil: Cavallero, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Córdoba. Estación Experimental Agropecuaria Manfredi. Estación Forestal Villa Dolores; Argentina
dc.description.fil
Fil: López, Dardo Rubén. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Córdoba. Estación Experimental Agropecuaria Manfredi. Estación Forestal Villa Dolores; Argentina
dc.description.fil
Fil: Pontieri, Federica. Università degli Studi del Molise; Italia
dc.description.fil
Fil: Marzialetti, Flavio. National Biodiversity Future Center; Italia. University of Sassari; Italia
dc.description.fil
Fil: Riera Tatché, Ramon. Università degli Studi del Molise; Italia. Universita degli Studi di Pavia; Italia
dc.description.fil
Fil: Gamba, Paolo. Universita degli Studi di Pavia; Italia
dc.description.fil
Fil: Carranza, Maria Laura. Università degli Studi del Molise; Italia. Universita Degli Studi Di Pavia; Italia
dc.journal.title
Remote Sensing
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2072-4292/17/5/748
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.3390/rs17050748
Archivos asociados