Mostrar el registro sencillo del ítem

dc.contributor.author
Bruguieres, A.  
dc.contributor.author
Natale, Sonia Lujan  
dc.date.available
2025-09-25T13:44:29Z  
dc.date.issued
2011-01  
dc.identifier.citation
Bruguieres, A.; Natale, Sonia Lujan; Exact Sequences of Tensor Categories; Oxford University Press; International Mathematics Research Notices; 2011; 1-2011; 5644-5705  
dc.identifier.issn
1073-7928  
dc.identifier.uri
http://hdl.handle.net/11336/271927  
dc.description.abstract
We introduce the notions of normal tensor functor and exact sequence of tensor categories. We show that exact sequences of tensor categories generalize strictly exact sequences of Hopf algebras as defined by Schneider, and in particular, exact sequences of (finite) groups. We classify exact sequences of tensor categories formula (such that formula is finite) in terms of normal, faithful Hopf monads on formula and also in terms of self-trivializing commutative algebras in the center of formula⁠. More generally, we show that, given any dominant tensor functor formula admitting an exact (right or left) adjoint, there exists a canonical commutative algebra (A,σ) in the center of formula such that F is tensor equivalent to the free module functor formula⁠, where formula denotes the category of A-modules in formula endowed with a monoidal structure defined using σ. We re-interpret equivariantization under a finite group action on a tensor category and, in particular, the modularization construction, in terms of exact sequences, Hopf monads, and commutative central algebras. As an application, we prove that a braided fusion category whose dimension is odd and square-free is equivalent, as a fusion category, to the representation category of a group.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Oxford University Press  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Tensor category  
dc.subject
Exact sequence  
dc.subject
Hopf monad  
dc.subject
Hopf algebra  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Exact Sequences of Tensor Categories  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-09-17T13:30:34Z  
dc.journal.volume
2011  
dc.journal.pagination
5644-5705  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Oxford  
dc.description.fil
Fil: Bruguieres, A.. Université Montpellier II; Francia  
dc.description.fil
Fil: Natale, Sonia Lujan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina  
dc.journal.title
International Mathematics Research Notices  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/imrn/article-abstract/2011/24/5644/683649  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1093/imrn/rnq294