Mostrar el registro sencillo del ítem
dc.contributor.author
Bruguieres, A.
dc.contributor.author
Natale, Sonia Lujan
dc.date.available
2025-09-25T13:44:29Z
dc.date.issued
2011-01
dc.identifier.citation
Bruguieres, A.; Natale, Sonia Lujan; Exact Sequences of Tensor Categories; Oxford University Press; International Mathematics Research Notices; 2011; 1-2011; 5644-5705
dc.identifier.issn
1073-7928
dc.identifier.uri
http://hdl.handle.net/11336/271927
dc.description.abstract
We introduce the notions of normal tensor functor and exact sequence of tensor categories. We show that exact sequences of tensor categories generalize strictly exact sequences of Hopf algebras as defined by Schneider, and in particular, exact sequences of (finite) groups. We classify exact sequences of tensor categories formula (such that formula is finite) in terms of normal, faithful Hopf monads on formula and also in terms of self-trivializing commutative algebras in the center of formula. More generally, we show that, given any dominant tensor functor formula admitting an exact (right or left) adjoint, there exists a canonical commutative algebra (A,σ) in the center of formula such that F is tensor equivalent to the free module functor formula, where formula denotes the category of A-modules in formula endowed with a monoidal structure defined using σ. We re-interpret equivariantization under a finite group action on a tensor category and, in particular, the modularization construction, in terms of exact sequences, Hopf monads, and commutative central algebras. As an application, we prove that a braided fusion category whose dimension is odd and square-free is equivalent, as a fusion category, to the representation category of a group.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Oxford University Press
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Tensor category
dc.subject
Exact sequence
dc.subject
Hopf monad
dc.subject
Hopf algebra
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Exact Sequences of Tensor Categories
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-09-17T13:30:34Z
dc.journal.volume
2011
dc.journal.pagination
5644-5705
dc.journal.pais
Reino Unido
dc.journal.ciudad
Oxford
dc.description.fil
Fil: Bruguieres, A.. Université Montpellier II; Francia
dc.description.fil
Fil: Natale, Sonia Lujan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
dc.journal.title
International Mathematics Research Notices
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/imrn/article-abstract/2011/24/5644/683649
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1093/imrn/rnq294
Archivos asociados