Mostrar el registro sencillo del ítem
dc.contributor.author
Sanchez, Jorge Adrian
dc.contributor.author
Perronnin, Florent
dc.contributor.author
de Campos, Teófilo
dc.date.available
2025-09-24T11:42:17Z
dc.date.issued
2012-12
dc.identifier.citation
Sanchez, Jorge Adrian; Perronnin, Florent; de Campos, Teófilo; Modeling the spatial layout of images beyond spatial pyramids; Elsevier Science; Pattern Recognition Letters; 33; 16; 12-2012; 2216-2223
dc.identifier.issn
0167-8655
dc.identifier.uri
http://hdl.handle.net/11336/271744
dc.description.abstract
Several state-of-the-art image representations consist in averaging local statistics computed from patch-level descriptors. It has been shown by Boureau et al. that such average statistics suffer from two sources of variance. The first one comes from the fact that a finite set of local statistics are averaged. The second one is due to the variation in the proportion of object-dependent information between different images of the same class. For the problem of object classification, these sources of variance affect negatively the accuracy since they increase the overlap between class-conditional probabilities. Our goal is to include information about the spatial layout of images in image signatures based on average statistics. We show that the traditional approach to including the spatial layout ? the spatial pyramid (SP) ? increases the first source of variance while only weakly reducing the second one. We therefore propose two complementary approaches to account for the spatial layout which are compatible with our goal of variance reduction. The first one models the spatial layout in an image-independent manner (as is the case of the SP) while the second one adapts to the image content. A significant benefit of these approaches with respect to the SP is that they do not incur an increase of the image signature dimensionality. We show on PASCAL VOC 2007, 2008 and 2009 the benefits of our approach.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
IMAGE REPRESENTATION
dc.subject
SPATIAL LAYOUT
dc.subject
IMAGE CATEGORIZATION
dc.subject
FISHER VECTORS
dc.subject
PASCAL VOC DATASET
dc.subject
SPATIAL PYRAMIDS
dc.subject.classification
Otras Ciencias de la Computación e Información
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Modeling the spatial layout of images beyond spatial pyramids
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-09-04T12:36:08Z
dc.journal.volume
33
dc.journal.number
16
dc.journal.pagination
2216-2223
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Sanchez, Jorge Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
dc.description.fil
Fil: Perronnin, Florent. Xerox Research Centre Europe; Francia
dc.description.fil
Fil: de Campos, Teófilo. University of Surrey; Reino Unido
dc.journal.title
Pattern Recognition Letters
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167865512002413
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.patrec.2012.07.019
Archivos asociados