Artículo
Some inequalities on weighted Sobolev spaces, distance weights, and the Assouad dimension
Fecha de publicación:
07/2025
Editorial:
Wiley VCH Verlag
Revista:
Mathematische Nachrichten
ISSN:
0025-584X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We considercertain inequalities and a related result on weighted Sobolev spaces on bounded John domains in $R^n$. Namely, we study the existence of a right inverse for the divergence operator, along with the corresponding a priori estimate, the improved and the fractional Poincaré inequalities, the Korn inequality, and the local Fefferman–Stein inequality. All these results are obtained on weighted Sobolev spaces, where the weight is a power of the distance to the boundary. In all cases the exponent of the weight d(·,∂Ω)^{βp} is only required to satisfy the restriction: βp>−(n−dimA(∂Ω)), where p is the exponent of the Sobolev space and dimA(∂Ω) is the Assouad dimension of the boundary of the domain. To the best of our knowledge, this condition is less restrictive than the ones in the literature.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
López García, Fernando; Ojea, Ignacio; Some inequalities on weighted Sobolev spaces, distance weights, and the Assouad dimension; Wiley VCH Verlag; Mathematische Nachrichten; 298; 8; 7-2025; 2749-2769
Compartir
Altmétricas