Mostrar el registro sencillo del ítem

dc.contributor.author
Allamigeon, Xavier  
dc.contributor.author
Gaubert, Stéphane  
dc.contributor.author
Katz, Ricardo David  
dc.date.available
2025-09-19T12:25:45Z  
dc.date.issued
2011-01  
dc.identifier.citation
Allamigeon, Xavier; Gaubert, Stéphane; Katz, Ricardo David; The number of extreme points of tropical polyhedra; Academic Press Inc Elsevier Science; Journal of Combinatorial Theory Series A; 118; 1; 1-2011; 162-189  
dc.identifier.issn
0097-3165  
dc.identifier.uri
http://hdl.handle.net/11336/271407  
dc.description.abstract
The celebrated upper bound theorem of McMullen determines the maximal number of extreme points of a polyhedron in terms of its dimension and the number of constraints which define it, showing that the maximum is attained by the polar of the cyclic polytope. We show that the same bound is valid in the tropical setting, up to a trivial modification. Then, we study the tropical analogues of the polars of a family of cyclic polytopes equipped with a sign pattern. We construct bijections between the extreme points of these polars and lattice paths depending on the sign pattern, from which we deduce explicit bounds for the number of extreme points, showing in particular that the upper bound is asymptotically tight as the dimension tends to infinity, keeping the number of constraints fixed.  When transposed to the classical case, the previous constructions yield some lattice path generalizations of Gale´s evenness criterion.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Academic Press Inc Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
TROPICAL CONVEXITY  
dc.subject
MAX-PLUS CONVEXITY  
dc.subject
UPPER BOUND THEOREM  
dc.subject
EXTREME POINTS  
dc.subject
LATTICE PATHS  
dc.subject
GALE'S EVENNESS CONDITION  
dc.subject
CYCLIC POLYTOPE  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
The number of extreme points of tropical polyhedra  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-09-17T13:31:35Z  
dc.journal.volume
118  
dc.journal.number
1  
dc.journal.pagination
162-189  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Allamigeon, Xavier. No especifíca;  
dc.description.fil
Fil: Gaubert, Stéphane. Institut National de Recherche en Informatique et en Automatique; Francia  
dc.description.fil
Fil: Katz, Ricardo David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Instituto de Matemática "Beppo Levi"; Argentina  
dc.journal.title
Journal of Combinatorial Theory Series A  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0097316510000725  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.jcta.2010.04.003