Mostrar el registro sencillo del ítem
dc.contributor.author
Allamigeon, Xavier
dc.contributor.author
Gaubert, Stéphane
dc.contributor.author
Katz, Ricardo David

dc.date.available
2025-09-19T12:25:45Z
dc.date.issued
2011-01
dc.identifier.citation
Allamigeon, Xavier; Gaubert, Stéphane; Katz, Ricardo David; The number of extreme points of tropical polyhedra; Academic Press Inc Elsevier Science; Journal of Combinatorial Theory Series A; 118; 1; 1-2011; 162-189
dc.identifier.issn
0097-3165
dc.identifier.uri
http://hdl.handle.net/11336/271407
dc.description.abstract
The celebrated upper bound theorem of McMullen determines the maximal number of extreme points of a polyhedron in terms of its dimension and the number of constraints which define it, showing that the maximum is attained by the polar of the cyclic polytope. We show that the same bound is valid in the tropical setting, up to a trivial modification. Then, we study the tropical analogues of the polars of a family of cyclic polytopes equipped with a sign pattern. We construct bijections between the extreme points of these polars and lattice paths depending on the sign pattern, from which we deduce explicit bounds for the number of extreme points, showing in particular that the upper bound is asymptotically tight as the dimension tends to infinity, keeping the number of constraints fixed. When transposed to the classical case, the previous constructions yield some lattice path generalizations of Gale´s evenness criterion.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Academic Press Inc Elsevier Science

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
TROPICAL CONVEXITY
dc.subject
MAX-PLUS CONVEXITY
dc.subject
UPPER BOUND THEOREM
dc.subject
EXTREME POINTS
dc.subject
LATTICE PATHS
dc.subject
GALE'S EVENNESS CONDITION
dc.subject
CYCLIC POLYTOPE
dc.subject.classification
Matemática Pura

dc.subject.classification
Matemáticas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
The number of extreme points of tropical polyhedra
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-09-17T13:31:35Z
dc.journal.volume
118
dc.journal.number
1
dc.journal.pagination
162-189
dc.journal.pais
Estados Unidos

dc.description.fil
Fil: Allamigeon, Xavier. No especifíca;
dc.description.fil
Fil: Gaubert, Stéphane. Institut National de Recherche en Informatique et en Automatique; Francia
dc.description.fil
Fil: Katz, Ricardo David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Instituto de Matemática "Beppo Levi"; Argentina
dc.journal.title
Journal of Combinatorial Theory Series A

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0097316510000725
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.jcta.2010.04.003
Archivos asociados