Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Recursive variational autoencoders for 3D blood vessel generative modeling

Feldman, Paula AdiIcon ; Fainstein, Miguel; Siless, Viviana; Delrieux, Claudio AugustoIcon ; Iarussi, EmmanuelIcon
Fecha de publicación: 10/2025
Editorial: Elsevier Science
Revista: Medical Image Analysis
ISSN: 1361-8415
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Anatomical trees play an important role in clinical diagnosis and treatment planning. Yet, accurately representing these structures poses significant challenges owing to their intricate and varied topology and geometry. Most existing methods to synthesize vasculature are rule based, and despite providing some degree of control and variation in the structures produced, they fail to capture the diversity and complexity of actual anatomical data. We developed a Recursive variational Neural Network (RvNN) that fully exploits the hierarchical organization of the vessel and learns a low-dimensional manifold encoding branch connectivity along with geometry features describing the target surface. After training, the RvNN latent space can be sampled to generate new vessel geometries. By leveraging the power of generative neural networks, we generate 3D models of blood vessels that are both accurate and diverse, which is crucial for medical and surgical training, hemodynamic simulations, and many other purposes. These results closely resemble real data, achieving high similarity in vessel radii, length, and tortuosity across various datasets, including those with aneurysms. To the best of our knowledge, this work is the first to utilize this technique for synthesizing blood vessels.
Palabras clave: VASCULAR 3D MODEL , GENERATIVE MODELING , NEURAL NETWORKS , VARIATIONAL AUTOENCODERS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 47.01Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/271369
URL: https://linkinghub.elsevier.com/retrieve/pii/S1361841525002506
DOI: http://dx.doi.org/10.1016/j.media.2025.103703
URL: https://arxiv.org/abs/2506.14914v1
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Feldman, Paula Adi; Fainstein, Miguel; Siless, Viviana; Delrieux, Claudio Augusto; Iarussi, Emmanuel; Recursive variational autoencoders for 3D blood vessel generative modeling; Elsevier Science; Medical Image Analysis; 105; 103703; 10-2025; 1-13
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES