Mostrar el registro sencillo del ítem

dc.contributor.author
Fernández, María Laura  
dc.contributor.author
Risk, Marcelo  
dc.contributor.other
Miklavcic, Damijan  
dc.date.available
2025-09-18T13:03:06Z  
dc.date.issued
2016  
dc.identifier.citation
Fernández, María Laura; Risk, Marcelo; Lipid Electropore Stabilization; Springer; 2016; 1-17  
dc.identifier.isbn
978-3-319-26779-1  
dc.identifier.uri
http://hdl.handle.net/11336/271362  
dc.description.abstract
The stabilization of pores can be studied by different approaches such as simulations in silico or experimental procedures in vivo or in vitro. The energy to open a pore in a lipid membrane can be delivered by different external stimuli. To disrupt the membrane and initiate the pore opening, this energy has to reach a threshold. Then, once the pore is open, the external stimulus can be modulated to maintain the pore stable in time. This chapter first describes the basics of electropermeabilization, a process also called electroporation, and the basics of molecular dynamics in electropermeabilization. The chapter then describes in detail the molecular changes that lead to the pore opening and evolution by molecular dynamics. The chapter focuses on molecular dynamics because this technique allows the study of pore stabilization at molecular level, the interpretationof the lipid and water molecule rearrangements that are behind this phenomenon, and the visualization of the pore at the scale of size and time, in the order of nanometers and nanoseconds, respectively. Finally, the chapter also describes other approaches where pores remain open or the permeabilized state remains stable for a period of time, such as continuum modeling, experiments in planar membranes, and experiments in cells. The objective of this selection is to relate the results obtained by molecular dynamics with those obtained experimentally,or by other types of modeling, aiming to connect the mechanisms of pore stabilization by molecular dynamics at different scales.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ELECTROPERMEABILIZATION  
dc.subject
ELECTROPORATION  
dc.subject
MOLECULAR DYNAMICS  
dc.subject
PORE STABILIZATION  
dc.subject.classification
Ingeniería Médica  
dc.subject.classification
Ingeniería Médica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Lipid Electropore Stabilization  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/bookPart  
dc.type
info:ar-repo/semantics/parte de libro  
dc.date.updated
2025-09-04T13:05:30Z  
dc.journal.pagination
1-17  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
New York  
dc.description.fil
Fil: Fernández, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina  
dc.description.fil
Fil: Risk, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Tecnológico de Buenos Aires; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/rwe/10.1007/978-3-319-26779-1_83-1  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/978-3-319-26779-1_83-1  
dc.conicet.paginas
600  
dc.source.titulo
Handbook of Electroporation