Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Understanding the long‐term spatial dynamics of a semiarid grass‐shrub steppe through inverse parameterization for simulation models

Cipriotti, Pablo ArielIcon ; Aguiar, Martin RobertoIcon ; Wiegand, Thorsten; Paruelo, JoséIcon
Fecha de publicación: 03/2012
Editorial: Wiley Blackwell Publishing, Inc
Revista: Oikos
ISSN: 0030-1299
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Tierra y relacionadas con el Medio Ambiente

Resumen

Desertification threatens 70% of all dry lands worldwide by diminishing the provision of economic and ecosystem services. However, since long-term vegetation dynamics of semiarid ecosystems are difficult to study, the opportunities to evaluate desertification and degradation properly are limited. In this study, we tailored, calibrated and tested a spatially-explicit simulation model (DINVEG) to describe the long-term dynamics of dominant grass and shrub species in the semiarid Patagonian steppe. We used inverse techniques to identify parameterizations that yield model outputs in agreement with detailed field data, and we performed sensitivity analyses to reveal the main drivers of long-term vegetation dynamics. Whereas many parameterizations (10?45%) matched single field observations (e.g. grass and shrub cover, species-specific density, aboveground net primary production [ANPP]), only a few parameterizations (0.05%) yielded simultaneous match of all field observations. Sensitivity analysis pointed to demographic constraints for shrubs and grasses in the emergence and recruitment phase, respectively, which contributed to balanced shrub-grass abundances in the long run. Vegetation dynamics of simulations that matched all field observations were characterized by a stochastic equilibrium. The soil water content in the top layer (0?10 cm) during the emergence period was the strongest predictor of shrub densities and popula-tion growth rates and of growth rates of grasses. Grasses controlled the shrub demography because of the resource overlap of grasses with juvenile shrubs (i.e. water content in the top layer). In agreement with field observations, ecosystem func-tion buffered the strong variability in precipitation (a simulated CV in ANPP of 16% vs CV in precipitation of 33%). Our results show that seedling emergence and recruitment are critical processes for long-term vegetation dynamics in this steppe. The methods presented here could be widely applied when data for direct parameterization of individual-based models are lacking, but data corresponding to model outputs are available. Our modeling methodology can reduce the need for long-term data sets when answering questions regarding community dynamics.
Palabras clave: desertificación , modelos de simulación
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 4.736Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/271331
URL: https://nsojournals.onlinelibrary.wiley.com/doi/full/10.1111/j.1600-0706.2012.20
DOI: http://dx.doi.org/10.1111/j.1600-0706.2012.20317.x
Colecciones
Articulos(IFEVA)
Articulos de INST.D/INV.FISIOLOGICAS Y ECO.VINCULADAS A L/AGRIC
Citación
Cipriotti, Pablo Ariel; Aguiar, Martin Roberto; Wiegand, Thorsten; Paruelo, José; Understanding the long‐term spatial dynamics of a semiarid grass‐shrub steppe through inverse parameterization for simulation models; Wiley Blackwell Publishing, Inc; Oikos; 121; 6; 3-2012; 848-861
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES