Mostrar el registro sencillo del ítem

dc.contributor.author
Walsh, Miguel Nicolás  
dc.date.available
2025-09-16T10:10:15Z  
dc.date.issued
2025-06  
dc.identifier.citation
Walsh, Miguel Nicolás; Stability under scaling in the local phases of multiplicative functions; Springer; Inventiones Mathematicae; 241; 1; 6-2025; 325-362  
dc.identifier.issn
0020-9910  
dc.identifier.uri
http://hdl.handle.net/11336/271062  
dc.description.abstract
We introduce a strategy to tackle some known obstructions of current approaches to the Fourier uniformity conjecture. Assuming GRH, we then show the conjecture holds for intervals of length at least (log X)^{psi(X)}, with psi(X) -> infty an arbitrarily slowly growing function of X. We expect the methods should adapt to nilsequences, thus also showing that the Generalised Riemann Hypothesis implies close to exponential growth in the sign patterns of the Liouville function.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ABSTRACT HARMONIC ANALYSIS  
dc.subject
FOURIER ANALYSIS  
dc.subject
MATHEMATICS  
dc.subject
NUMBER THEORY  
dc.subject
REAL FUNCTIONS  
dc.subject
FUNCTIONAL ANALYSIS  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Stability under scaling in the local phases of multiplicative functions  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-09-15T12:43:03Z  
dc.journal.volume
241  
dc.journal.number
1  
dc.journal.pagination
325-362  
dc.journal.pais
Alemania  
dc.description.fil
Fil: Walsh, Miguel Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.journal.title
Inventiones Mathematicae  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00222-025-01343-y  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00222-025-01343-y  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2310.07873