Mostrar el registro sencillo del ítem
dc.contributor.author
Brugnoni, Lorena Inés
dc.contributor.author
Cubitto, María Amelia
dc.contributor.author
Lozano, Jorge Enrique
dc.date.available
2025-09-11T14:45:49Z
dc.date.issued
2012-08-22
dc.identifier.citation
Brugnoni, Lorena Inés; Cubitto, María Amelia; Lozano, Jorge Enrique; Candida krusei development on turbulent flow regimes: Biofilm formation and efficiency of cleaning and disinfection program; Elsevier; Journal of Food Engineering; 111; 4; 22-8-2012; 546-552
dc.identifier.issn
0260-8774
dc.identifier.uri
http://hdl.handle.net/11336/270837
dc.description.abstract
In food processing lines or in complex equipment such as pumps or valves, microorganisms are exposed to varying hydrodynamic conditions caused by the flow of liquid food, and biofilms are thus grown under a wide distribution of local hydrodynamic strengths. Using an industrially relevant strain of Candida krusei, we demonstrated that biofilms formed on stainless steel for 4 days at Reynolds (Re) numbers ranging from 294,000 to 1.2 x 106 proceeds through three distinct developmental phases. These growth phases transform adherent blastospores to well-defined cellular communities encased in an extracellular matrix and biofilm formation increases when increasing Reynolds number and time. In all growth phases, the morphology of C. krusei biofilm revealed the influence of hydrodynamic drag. Indeed, we study the effect of cleaning and sanitation procedure in the control of turbulent flow-generated biofilm. This procedure involves alkali (NaOH 0.5 %) and sodium hypochlorite (500 ppm). In terms of total biofilm mass, removal decreases with increasing biofilm age. The largest reduction post-treatment (between 57-62%) was observed, to all Reynolds numbers, on 24 h and 48h- old biofilms. Removal was between 39 and 46 % on 72 h-old biofilms and was close to 30 % for all Reynolds numbers on 96 h-old biofilm.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
TURBULENT FLOW
dc.subject
YEAST
dc.subject
BIOFILMS
dc.subject
STAINLESS STEEL
dc.subject.classification
Alimentos y Bebidas
dc.subject.classification
Otras Ingenierías y Tecnologías
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Candida krusei development on turbulent flow regimes: Biofilm formation and efficiency of cleaning and disinfection program
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-09-09T11:02:55Z
dc.journal.volume
111
dc.journal.number
4
dc.journal.pagination
546-552
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Brugnoni, Lorena Inés. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
dc.description.fil
Fil: Cubitto, María Amelia. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia; Argentina
dc.description.fil
Fil: Lozano, Jorge Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
dc.journal.title
Journal of Food Engineering
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.journals.elsevier.com/journal-of-food-engineering/
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.jfoodeng.2012.03.023
Archivos asociados