Mostrar el registro sencillo del ítem

dc.contributor.author
Brugnoni, Lorena Inés  
dc.contributor.author
Cubitto, María Amelia  
dc.contributor.author
Lozano, Jorge Enrique  
dc.date.available
2025-09-11T14:45:49Z  
dc.date.issued
2012-08-22  
dc.identifier.citation
Brugnoni, Lorena Inés; Cubitto, María Amelia; Lozano, Jorge Enrique; Candida krusei development on turbulent flow regimes: Biofilm formation and efficiency of cleaning and disinfection program; Elsevier; Journal of Food Engineering; 111; 4; 22-8-2012; 546-552  
dc.identifier.issn
0260-8774  
dc.identifier.uri
http://hdl.handle.net/11336/270837  
dc.description.abstract
In food processing lines or in complex equipment such as pumps or valves, microorganisms are exposed to varying hydrodynamic conditions caused by the flow of liquid food, and biofilms are thus grown under a wide distribution of local hydrodynamic strengths. Using an industrially relevant strain of Candida krusei, we demonstrated that biofilms formed on stainless steel for 4 days at Reynolds (Re) numbers ranging from 294,000 to 1.2 x 106 proceeds through three distinct developmental phases. These growth phases transform adherent blastospores to well-defined cellular communities encased in an extracellular matrix and biofilm formation increases when increasing Reynolds number and time. In all growth phases, the morphology of C. krusei biofilm revealed the influence of hydrodynamic drag. Indeed, we study the effect of cleaning and sanitation procedure in the control of turbulent flow-generated biofilm. This procedure involves alkali (NaOH 0.5 %) and sodium hypochlorite (500 ppm). In terms of total biofilm mass, removal decreases with increasing biofilm age. The largest reduction post-treatment (between 57-62%) was observed, to all Reynolds numbers, on 24 h and 48h- old biofilms. Removal was between 39 and 46 % on 72 h-old biofilms and was close to 30 % for all Reynolds numbers on 96 h-old biofilm.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
TURBULENT FLOW  
dc.subject
YEAST  
dc.subject
BIOFILMS  
dc.subject
STAINLESS STEEL  
dc.subject.classification
Alimentos y Bebidas  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Candida krusei development on turbulent flow regimes: Biofilm formation and efficiency of cleaning and disinfection program  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-09-09T11:02:55Z  
dc.journal.volume
111  
dc.journal.number
4  
dc.journal.pagination
546-552  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Brugnoni, Lorena Inés. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina  
dc.description.fil
Fil: Cubitto, María Amelia. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia; Argentina  
dc.description.fil
Fil: Lozano, Jorge Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina  
dc.journal.title
Journal of Food Engineering  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.journals.elsevier.com/journal-of-food-engineering/  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.jfoodeng.2012.03.023