Artículo
Lift-and-project ranks of the set covering polytope of circulant matrices
Fecha de publicación:
12/2012
Editorial:
Elsevier Science
Revista:
Discrete Applied Mathematics
ISSN:
0166-218X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper, we analyze the behavior of the N and N+ operators (defined by Lovász and Schrijver) and the disjunctive operator due to Balas, Ceria and Cornuéjols, on the linear relaxation of the set covering polytope associated with circulant matrices C k n . We found that for the family of circulant matrices C k sk+1 the disjunctive rank coincides with the Nand N+-rank at the value k − 1. This result provides bounds for lift-and-project ranks of most circulant matrices since C k sk+1 appears as a minor of almost all circulant matrices. According to these operators, we define the strength of facets with respect to the linear relaxation of the set covering polytope and compare the results with a similar measure previously defined by Goemans. We identify facets of maximum strength although the complete description of the set covering polytope of circulant matrices is still unknown. Moreover, considering the matrices C k sk with s ≥ k + 1, we found a family of facets of the corresponding set covering polyhedron, having maximum strength according to the disjunctive and Goemans’ measures.
Palabras clave:
CIRCULANT MATRIX
,
LIFT-AND-PROJECT OPERATORS
,
STRENGTH OF FACETS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - ROSARIO)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Citación
Bianchi, Silvia María; Escalante, Mariana Silvina; Montelar, María Susana; Lift-and-project ranks of the set covering polytope of circulant matrices; Elsevier Science; Discrete Applied Mathematics; 160; 18; 12-2012; 2555-2562
Compartir
Altmétricas