Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Parameter estimation in kinetic models for large scale biotechnological systems with advanced mathematical programming techniques

Di Maggio, Jimena AndreaIcon ; Paulo, Cecilia InésIcon ; Estrada, Vanina GiselaIcon ; Perotti, Nora InesIcon ; Diaz Ricci, Juan CarlosIcon ; Díaz, María SoledadIcon
Fecha de publicación: 28/12/2013
Editorial: Elsevier Science Sa
Revista: Biochemical Engineering Journal
ISSN: 1369-703X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingeniería Química

Resumen

In the present work, we formulate parameter estimation problems for kinetic models of large-scale dynamic biotechnological systems. We propose dynamic models of increasing complexity for metabolic networks and continuous bioreactors. The differential algebraic equations (DAE) system for the metabolic network represent the glycolysis, the phosphotransferase system and the pentose-phosphate pathway of Escherichia coli, with modifications proposed for several enzyme kinetics. The most sensitive parameters have been ranked by performing global sensitivity analysis on the dynamic metabolic network. Since the kinetic parameters for the enzymes have been obtained from in vitro experiments, the formulation of a detailed kinetic model for the metabolic network allows parameter adjustment for in vivo conditions. We formulate an unstructured non-segregated model for a chemostat to study the dynamic response to a glucose pulse in a continuous culture of E. coli. Moreover, we perform parameter estimation by formulating a maximum likelihood problem, subject to the DAE systems, within a control vector parameterization approach. Nine kinetic parameters in the metabolic network model have been estimated with good agreement with published experimental data. For the bioreactor model, seven parameters have been tuned based on experimental data obtained in this work. Numerical results show a good agreement between the observed data and the predicted profiles.
Palabras clave: Dynamic Metabolic Network , Dynamic Optimization , Control Vector Parameterization
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.195Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/27055
URL: http://www.sciencedirect.com/science/article/pii/S1369703X13003598
DOI: http://dx.doi.org/10.1016/j.bej.2013.12.012
Colecciones
Articulos(CCT - TANDIL)
Articulos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Articulos(INSIBIO)
Articulos de INST.SUP.DE INVEST.BIOLOGICAS
Articulos(PLAPIQUI)
Articulos de PLANTA PILOTO DE INGENIERIA QUIMICA (I)
Articulos(PROIMI)
Articulos de PLANTA PILOTO DE PROC.IND.MICROBIOLOGICOS (I)
Citación
Di Maggio, Jimena Andrea; Paulo, Cecilia Inés; Estrada, Vanina Gisela; Perotti, Nora Ines; Diaz Ricci, Juan Carlos; et al.; Parameter estimation in kinetic models for large scale biotechnological systems with advanced mathematical programming techniques; Elsevier Science Sa; Biochemical Engineering Journal; 83; 28-12-2013; 104-115
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES