Artículo
The Sub-Riemannian Geometry of Screw Motions with Constant Pitch
Fecha de publicación:
09/2023
Editorial:
Springer
Revista:
The Journal Of Geometric Analysis
ISSN:
1050-6926
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We consider a family of Riemannian manifolds M such that for each unit speed geodesic gamma of M there exists a distinguished bijective correspondence L between infinitesimal translations along gamma and infinitesimal rotations around it. The simplest examples are R^3, S^3 and hyperbolic 3-space, with defined in terms of the cross product. More generally, M is a connected compact semisimple Lie group, or its non-compact dual, or Euclidean space acted on transitively by some group which is contained properly in the full group of rigid motions. Let G be the identity component of the isometry group of M. A curve in G may be thought of as a motion of a body in M. Given c in R^3, we define a left invariant distribution on G accounting for infinitesimal roto-translations of M of pitch c. We give conditions for the controllability of the associated control system on G and find explicitly all the geodesics of the natural sub-Riemannian structure.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - CORDOBA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Hulett, Eduardo Guillermo; Moas, Ruth Paola; Salvai, Marcos Luis; The Sub-Riemannian Geometry of Screw Motions with Constant Pitch; Springer; The Journal Of Geometric Analysis; 33; 12; 9-2023; 1-21
Compartir
Altmétricas