Mostrar el registro sencillo del ítem

dc.contributor.author
Mazzieri, Gisela Luciana  
dc.contributor.author
Spies, Ruben Daniel  
dc.contributor.author
Temperini, Karina Guadalupe  
dc.date.available
2025-09-04T11:34:36Z  
dc.date.issued
2012-12  
dc.identifier.citation
Mazzieri, Gisela Luciana; Spies, Ruben Daniel; Temperini, Karina Guadalupe; Existence, uniquennes and stability of minimizers of generalized Tikhonov-Phillips functionals; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 396; 1; 12-2012; 396-411  
dc.identifier.issn
0022-247X  
dc.identifier.uri
http://hdl.handle.net/11336/270307  
dc.description.abstract
The Tikhonov-Phillips method is widely used for regularizing ill-posed inverse problemsmainly due to the simplicity of its formulation as an optimization problem. The useof different penalizers in the functionals associated to the corresponding optimizationproblems has originated a variety of other methods which can be considered as"variants" of the traditional Tikhonov-Phillips method of order zero. Such is the case forinstance of the Tikhonov-Phillips method of order one, the total variation regularizationmethod, etc. In this article we find sufficient conditions on the penalizers in generalizedTikhonov-Phillips functionals which guarantee existence, uniqueness and stability of theminimizers. The particular cases in which the penalizers are given by the bounded variationnorm, by powers of seminorms and by linear combinations of powers of seminormsassociated to closed operators, are studied. Several examples are presented and a fewresults on image restoration are shown.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Academic Press Inc Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
INVERSE PROBLEM  
dc.subject
ILL-POSED  
dc.subject
REGULARIZATION  
dc.subject
TIKHONOV-PHILLIPS  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Existence, uniquennes and stability of minimizers of generalized Tikhonov-Phillips functionals  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-09-03T12:44:59Z  
dc.journal.volume
396  
dc.journal.number
1  
dc.journal.pagination
396-411  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Mazzieri, Gisela Luciana. Universidad Nacional del Litoral. Facultad de Bioquimica y Ciencias Biologicas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina  
dc.description.fil
Fil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Departamento de Matemáticas; Argentina  
dc.description.fil
Fil: Temperini, Karina Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina. Universidad Nacional del Litoral. Facultad de Humanidades y Ciencias; Argentina  
dc.journal.title
Journal of Mathematical Analysis and Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022247X12005409  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jmaa.2012.06.039