Artículo
Fiber functors and reconstruction of Hopf algebras
Fecha de publicación:
06/2024
Editorial:
Canadian Mathematical Soc
Revista:
Canadian Journal Of Mathematics
ISSN:
0008-414X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The main objective of the present paper is to present a version of the Tannaka-Krein type reconstruction Theorems: If F:B→C is an exact faithful monoidal functor of tensor categories, one would like to realize B as category of representations of a braided Hopf algebra H(F) in C. We prove that this is the case iff B has the additional structure of a monoidal C-module category compatible with F, which equivalently means that F admits a monoidal section. For Hopf algebras, this reduces to a version of the Radford projection theorem. The Hopf algebra is constructed through the relative coend for module categories. We expect this basic result to have a wide range of applications, in particular in the absence of fibre functors, and we give some applications. One particular motivation was the logarithmic Kazhdan-Lusztig conjecture.
Palabras clave:
Hopf algebra
,
Tensor category
,
Fiber functor
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Lentner, Simon; Mombelli, Juan Martín; Fiber functors and reconstruction of Hopf algebras; Canadian Mathematical Soc; Canadian Journal Of Mathematics; 77; 5; 6-2024; 1718-1761
Compartir
Altmétricas