Artículo
Ljusternik-Schnirelmann eigenvalues for the fractional m-Laplacian without the Δ2 condition
Fecha de publicación:
06/2025
Editorial:
American Institute of Mathematical Sciences
Revista:
Communications On Pure And Applied Analysis
ISSN:
1534-0392
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This operator serves as a model for nonlocal, nonstandard growth diffusion problems. In contrast to previous analyses, we explore the eigenvalue problem without presuming the ∆2 condition on M – the primitive function of m. Our results show the existence of a sequence of eigenvalues λk → ∞. This research contributes to advancing our understanding of nonlocal diffusion models, specifically those characterized by the fractional m−Laplacian, by relaxing the constraints imposed by the ∆2 condition.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMASL)
Articulos de INST. DE MATEMATICA APLICADA DE SAN LUIS
Articulos de INST. DE MATEMATICA APLICADA DE SAN LUIS
Citación
Fernandez Bonder, Julian; Spedaletti, Juan Francisco; Ljusternik-Schnirelmann eigenvalues for the fractional m-Laplacian without the Δ2 condition; American Institute of Mathematical Sciences; Communications On Pure And Applied Analysis; 24; 6; 6-2025; 1094-1117
Compartir
Altmétricas